Chemical Precipitation of Phosphorus in Water and Wastewater Samples: the Role of Water Components

Tolkou A., Kalaitzidou K., Mitракas M., Zouboulis A., Palasantza A.

Wastewater Treatment Plant of Touristic Area of Thessaloniki “AINEIAS”, N. Michaniona, Thessaloniki, AKTOR S.A., Greece

e-mail: manasis@eng.auth.gr, zoubouli@chem.auth.gr

Abstract

The present study aims to investigate the feasibility of phosphate removal and recovery from the secondary effluent of wastewater treatment plant “AINEIA”, Thessaloniki – Greece, which usually contains 3-5 mg P-PO\textsubscript{4}/L. Chemical precipitation by the addition of commercial reagents NaOH, Ca(OH)\textsubscript{2}, MgO, CaMg\textsubscript{2}(CO\textsubscript{3})\textsubscript{4}, illustrated that for reducing phosphate below the regulation limit of 1 mg P-PO\textsubscript{4}/L, pH value higher than 10 should be maintained. Moreover, NaOH proved as the cost effective reagent, since Ca\textsuperscript{2+} and Mg\textsuperscript{2+} concentrations of wastewater are high enough for PO\textsubscript{4}\textsuperscript{3-} precipitation, as the corresponding salts. However, the major drawbacks of this precipitation route are the low PO\textsubscript{4}\textsuperscript{3-} content of produced solids, along with the subsequent demand to decrease (again) the pH <9 for final wastewater disposal. In contrast, by the addition of Fe(III) or Al(III) salts, PO\textsubscript{4}\textsuperscript{3-} concentration below the regulation limit can be achieved in pH 7–8, which is commonly encountered in wastewaters, while the PO\textsubscript{4}\textsuperscript{3-} content in the produced solids was 29 and 16 %w/w, respectively.

Phosphate removal from the secondary effluent by adsorption onto iron oxy-hydroxide (FeOOH) resulted in final concentrations significantly lower than the respective regulation limit. Breakthrough curves from the Rapid Small Scale Column Tests (RSSCTs) revealed an adsorption capacity of Q\textsubscript{e}=6.5 mg P-PO\textsubscript{4}/g FeOOH at breakthrough concentration equal to regulation limit (1 mg P-PO\textsubscript{4}/L). However, this adsorption capacity was gradually stabilized to 3.5 mg P-PO\textsubscript{4}/g FeOOH after 4 regenerations. The regeneration at pH value 12-13 resulted in the efficient phosphate recovery within 2 h, which in turn favors its subsequent chemical precipitation and recovery by the addition of either Ca\textsuperscript{2+}, or Mg\textsuperscript{2+}. The phosphate content in the recovered solids was 48±4 w/w for calcium and 20±2 % w/w for magnesium, while both produced solids presented good phosphorus bioavailability. Another important observation is that at the end of regeneration process, the equilibrium PO\textsubscript{4}\textsuperscript{3-} concentration was practically zero and therefore, the regeneration solution could be recycled in the next cycle. Further on, the challenging part is to scale-up from lab to full-scale.

Results and Discussion

The PO\textsubscript{4}\textsuperscript{3-} content (% w/w) of produced solids was as follows: NaOH 9.3, Ca(OH)\textsubscript{2} 1.2, MgO 1.5, CaMg\textsubscript{2}(CO\textsubscript{3})\textsubscript{4} 1.3, Fe(III) 29, Al(III) 16.

Phosphate adsorption onto FeOOH solids seems to be a promising process, considering the pre-requirement for their regeneration and phosphate recovery.

Following the RSSCTs experiments a pilot-plant, working in continuous flow mode, was designed and built to treat 100-300 L/h.

This pilot plant consisted of two major parts:

• The adsorption bed is working for Empty Bed Velocity (EBV) 5-20 m/h and for Empty Bed Contact Time (EBCT) 3-10 min.

• The regeneration part works on 10 m/h EBV, pH 12.5–13 and incorporates also the phosphates recovery part. Calcium or magnesium phosphate solids will be further separated by membrane filtration.

Conclusions

• By increasing the pH of secondary effluent above 10, PO\textsubscript{4}\textsuperscript{3-} were effectively removed, due to their adsorption onto precipitated CaCO\textsubscript{3} or Mg(OH)\textsubscript{2} solids.

• NaOH proved the cost effective reagent for pH control (increase) and PO\textsubscript{4}\textsuperscript{3-} removal from the secondary effluent.

• PO\textsubscript{4}\textsuperscript{3-} were almost stoichiometrically precipitated at pH range 7-8, as Fe(III) or Al(III) salts.

• RSSCS using FeOOH at pH 7 showed effective PO\textsubscript{4}\textsuperscript{3-} removal. FeOOH was efficiently regenerated with NaOH solution, and PO\textsubscript{4}\textsuperscript{3-} recovered as Ca or Mg salts.

• Following the results from RSSCs, a continuous flow pilot-scale plant was designed and built to recover PO\textsubscript{4}\textsuperscript{3-} from the secondary effluent of “AINEIA”.

Acknowledgements

The financial support through the co-Financed by the European Union and the Greek State Program PAVET, Project (PhoReSe) – “Recovery of Phosphorus from the Secondary Effluent of Municipal Wastewater Treatment”, is gratefully appreciated.