European cows and pigs jointly produce 1.27 billion ton of manure every year. Its high nutrient content could favor its recovery as struvite (MgNH₄PO₄·6H₂O), a slow-release fertilizer. Particle size is an important characteristic in fertilizers, as bigger particles will have longer effects on soil, increasing the nutrient uptake of plants/crops. Few attempts have been made to increase particle size in lab-scale, only by adding seeding crystals/materials or by increasing the reaction time. The up-flow velocity as a controlling parameter for particle size has not yet been studied.

This research has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No 603744, within the ManureEcoMine project. Also, it was financially supported by the Catalan Government (2014FI_B 00084).

INTRODUCTION

THEORETICAL APPROACH

By applying AIR, a recirculation flow in the riser is induced, which can be calculated according to Merchuk and Glizzi (1999). Then, from the recirculation and the influent flow, the up-flow velocity can be calculated.

Therefore, adjusting the settling and the up-flow velocity, and with the hydrodynamic model:
- The up-flow velocity determines the particle size of the particles that settle in the collector.
- The recirculation flow induced favours growth due to recirculation and fluidization of formed nuclei.
- MINIMUM THEORETICAL EQUIVALENT DIAMETER, considering spherical particles (0.1 mm), that can be obtained can be calculated (Figure 2).

MATERIALS AND METHODS

EXPERIMENTAL SET-UP

In Figure 1, an scheme of the crystallizer is presented, showing the 3 different zones: RISER, COLLECTOR and EFFLUENT ZONE.

Struvite was recovered from an effluent of wastewater treatment plant, in which the concentrations of magnesium, ammonium and phosphate were increased (200 mg Mg²⁺ L⁻¹, 1000 mg NH₄⁺ L⁻¹ and 500 mg PO₄³⁻ L⁻¹) to have similar concentrations as swine manure.

RESULTS

Four different up-flow velocities (15.37; 16.99; 22.55 and 26.33 m h⁻¹) were studied to determine the influence of this parameter in struvite PARTICLE SIZE, PRODUCTION and QUALITY of the product.

Struvite PRODUCTION was assessed, varying from 1.45 g L⁻¹ treated at lower up-flow velocities, to 1.80 g L⁻¹ treated at the highest. Also, optic microscope images were taken (Figure 4).

The designed crystallizer favoured particles growth due to particles fluidization and recirculation of formed nuclei.

CONCLUSIONS

- Bigger particles could be obtained by increasing the up-flow velocity in the nucleation zone varying the air-flow applied, without affecting recovery efficiency.
- The system performance, both in terms of production and quality of the harvested product (pure struvite), showed great results, increasing the production at higher up-flow velocities.
- The crystallizer designed (air-lift reactor plus a settler) favoured particles growth due to particles fluidization and recirculation of formed nuclei, promoting secondary nucleation.
- The ‘model-predicted’ equivalent diameters matched with experimental analysis, confirming the theoretical approach done.