

From discussion to implementation

The impact of nutrient recovery targets and legal obligations on practical implementation

by Christian Kabbe

Bringing technologies to life

Joseph Wright of Derby: Henning Brand discovering phosphorus in 1669

Sewage (sludge) is a renewable nutrient resource still waiting to be tapped to it's full potential

[kton P/year]	Total	Recycled	Potential
Sewage sludge	297	115	182
Biodegradable solid waste	130	38	92
Meat & bone meal	128	6	122
Total	427-555	153-160	274-396
Manure recycling =	1 736		
Mineral fertiliser use =	1 448		

Van Dijk & OeOverview of phosphorus flows in wastes in Europe", 2013, Fertilisers Europe seminar, 6 Feb. 2013. Updated Van Dijk et al. 2015nema "

Sewage (sludge) is the second most relevant renewable waste stream for P recovery & recycling in Europe!

Pillars of Nutrient Recovery & Recycling

Challenge: Enabling techn. alternatives to complement /compensate traditional route!

Sewage Sludge - Destinations in Europe - Diversity

Sources: EurEau 2016, EUROSTAT 2016, DESTATIS 2016, BAFU 2016

Total sludge quantity covered: appr. 10 million tons of dry solids per year!

Do we know and have a right to choose ...

... what's in our food and where it comes from?

Burning Questions?

Why legal framework needs adaption?

- Is nutrient recovery and marketing considered responsibility of wastewater utilities?
- What are the drivers for implementation besides legal requiremements? (pressure and needs)

How?

- Starting with lowest hanging (feasible) fruits instead of highest hanging (maybe feasible?)
- Regulations should set an enabling frame for both, recovery and recycling value chains, not just demanding for one of them! (Integration instead of parallel structures)

Societal Challenge!

 Sustainability = balanced triangle between social justice, economy and environmental benefits Who pays? Who profits? Ratio between cost and benefits (for whom?)

Global implementation – without law enforcement just to recover as such?

status 🔻 🍳 operating ♀ construction ♀ planned

Availability of Solutions?

Nutrient Recovery Cascades for P & N + Energy are state of the art!

Challenges and keys to Success and Sustainability?

Only technologies, yielding **homogenous products** or raw materials, **independent from input material quality** and mutually meeting both criteria, **energy efficiency** and **resource efficiency** will have a chance for wide-spread application under sustainability aspects.

Keys:

- Heavy metal depletion (high quality products)
- ✓ Moderate energy (and chemicals) consumption (cost)
- ✓ Market for "known" recovered P (commercial products) (real value and price)

An enabling regulatory framework can accelerate the market uptake succeeding in a shift from market push to market pull

Germany 2017+: a template to adapt, but not just to copy as is

- 2017 new fertilising ordinance (DÜV) limits nutrient loads applied to land and acutely reduces sludge disposal capacities -> cost explosion!
- ew fertiliser ordinance (DÜMV) sets stricter gu years¹, teria (less catching up) ew sewage sludge ordinance (AbfK to be included reginates into force all WWTP have to submit sludge many doubled regincepts considering P recovery P recovery oblig. for all WWTP d and dou,000 p.e. (ban from land application) P recovery oblig. for all WTP d and dou,000 p.e. (ban from land application) P recovery oblig. for all WTP d and doug on p.e. wen smaller WWTP have fave dy P, if no land application possible on-site WWTP: P records are opted below 20 g P/kg DM or at least by 50% fter thermal-program are recovery rate that monoposal we disposal we di

- Ο
- Who pays for what? (Inc. and recovery from ash monopoly?) Ο

Size does matter – P recovery obligation for WWTP > 50.000 p.e.

Hotspots for P recovery & Recycling for WWTP > 50.000 p.e.

primary secondary clarification clarification grit chamber aeration → effluent influent 2029/32+ Land appl. prohibited waste activated sludge **Prohibited!** P re-dissolving pre-treatment agriculture Co-incineration only for sludge with < 2%Pprocess water 2b **2c** thickening Mono-incineration allowed biogas without restriction, but P Mono-incineration -> recovery from ash afterwards Main route! required -80% P recov. dewatering 3 2a minimum Limited! P depletion below 2% P in anaerobic incineration digestion **Priority for utilities:** sludge required or at least **Downstream WWTP** Integrated Long term disposal security 50% extraction to allow Cost control co-incineration **Clusters** Site by Lowest financial risk

Region North-West Germany – Example 1 – rural setting

- Traditionally high share of land application
- Since autumn 2017 acute shortage of disposal capacities (agriculture) -> cost explosion

Direct impact of new fertilizing ord. and mid-term impact of new sludge ord.

Affected p.e.: 12.768.800IsieOut of
(65,8%)19.410.000 p.e.at:Site-by-site P recovery will
not solve the problem of
lacking disposal capacities!

31 GK5 WWTr (> 100.000 p.e.) 32 GK4b WWTP (> 50.000 p.e.)

out of:

618 municipal WWTP in NW region in total (~ 10%)

Only existing sludge incinerator in region NW is VERA in Hamburg

Currently no capacities to legally dispose 26.000 Mg DS! Contracts for another 30.000 Mg DS will end 2018! No chance for extension!

Berlin 2017+: Example 2 – urban setting

Today: 60% mono-inc. 40% co-inc. Some struvite

Tomorrow: 100% mono-inc. Some struvite

Germany 2017+ substantial increase of mono-incineration

- Currently appr. 665 kt DS mono-incineration capacity 2017 (municipal sludge)
- After 2029/32 at least 1.200.000 Mg DS capacity needed to comply with sludge reg (Ecoprog 2017) ... likely more
- Most new capacities between 2022 and 2027 (already +480 kt DS in prep. announced)
 - -> future SSA quantity > 500.000 Mg/a (>45.000 Mg P/a)

No Recycling without Value Chains

Waste, raw material or product? -> Question of volume, homogenity and <u>still</u> of origin!

- Sludge organic fertiliser
- Struvite NP fertiliser in some MS (proven good fert. eff.)
- DCP approved P fertiliser (component)
- Ash generally barely plant available, rather raw material processing needed
- MAP/DAP main N&P components in fertiliser production (commodities)
- MGP / P_4 commercial products with broad application (commodities)

(Biochar) – actually Pyrochar! No fertiliser! Soil improver?

OSTARA's - Value Chain Solution (on-site WWTP recovery)

Source: OSTARA

Ash2[®]Phos– EasyMining Sweden AB (ash route)

Commercial HQ products as renew. raw materials Commercial HQ by-products Independent of Fe/Al and ash moisture Real Heavy Metal decontamination Robust and simple!!! Substantially reduces waste!

Source: http://www.easymining.se/our-technologies/ash2phos/

* mono/di-calcium phosphate (feed phosphate), mono/di-ammonium phosphate (fertilizer)

Wisdom just written on paper will be dust one day; Only the wisdom applied will shape our future!

Wrap-up & Outlook

- Key driver for P recovery in EU is nutrient surplus in industrial countries (not scarcity)
- Some countries adapt legislation (CH, DE) to foster P recovery, others will follow
- Sewage sludge already is and will be more & more pushed out of land application by farm residues (trend towards incineration in more and more countries)
- Site-by-site P recovery on-site WWTP needs to be linked with operational needs and benefits and will play a limited complementary role
- Ash-based route will become the major route for P recovery from sewage in Germany (>500.000 Mg SSA, > 45.000 Mg P) -> lowest risk for invest. and sludge disposal route
- No recycling without value chains! Legal frame still needs to enable! Border crossing value chains (ash exports!) Adaption of waste and fertiliser regs...!
- Known materials easier to integrate in market! Recyclates need to fit into existing markets, not the other way around!
- Phosphorus must not be considered in isolation (N, C ...) ... also synergies with other wastes like manure etc? Tap synergies!

Q Germany / EU Mainland

Q United Kingdom

- **Q** North America
- **Q** Australia / Asia

- Christian.Kabbe@isleutilities.com
- Karyn.Georges@isleutilities.com
- Steven.Farabaugh@isleutilities.com
- Karen.Clode@isleutilities.com

+49 (0)30 61647943
+44 (0)7730 216 318
+1 (201) 970 2726

Bringing Technologies to Life

Thank you

Bringing technologies to life