

Paul Withers, Donnacha Doody, Helen Jarvie, Dana Cordell, Brent Jacobs, Julia Martin-Ortega, Millers Alonso Camargo-Valero, Myles Patton, Erin Sherry, Christopher Lyon, Shane Rothwell and Kirsty Forber

The Role of Phosphorus in the Resilience and Sustainability of the UK Food System

- RePhoKUs aims to refocus phosphorus use in the UK food system in order to improve efficiency and sustainability, and deliver valued ecosystem services such as clean water and biodiversity.
- The project brings together experts in catchment science, adaptive capacity, agricultural economics and food system vulnerability.

Developing Sustainable Food Systems

Security = All food system stakeholders have access to phosphorus to ensure soils are fertile, agriculture is productive, people have sufficient nutritious food, and rivers, lakes and oceans are clean.

Vulnerability = The degree to which a given food system is susceptible to harm due to the dimensions of global phosphorus scarcity (stresses and shocks).

Resilience to stresses and shocks =

Robustness – resist a disturbance

Recovery – recover naturally from a disturbance back to the same state

Reorientation – recovery to a different state – a transformation

Why do we need to refocus P use?

The UK has no domestic source of P making it vulnerable to global P market shifts- **no one has previously evaluated this vulnerability nor have strategies to overcome this vulnerability been identified**

Do we have a secure source of P, will it become too expensive, or will reserves dwindle?

How efficient is our P use?

How sustainable is our P use?

Excess P in the diet is unnecessary and may cause health issues?

Compromising UK freshwaters (£37 billion), are there environmental constraints on P use?

Project Overview

Rationale

Improved P stewardship will reduce vulnerability to P shocks and increase the resilience and sustainability of the UK food system.

Overall objective

To enhance the resilience and sustainability of the UK food system by developing and prioritising adaptive strategies that reduce the vulnerability of UK farming to future P scarcity at multiple scales, and that enhance the balanced delivery of multiple ecosystem services for future food and water security.

Research Questions

- What are the key indicators of **P vulnerability** in the UK food system? What are the **risk pathways**?
- Which technical, agronomic and behavioural measures are most **appropriate** to increase food system resilience and at which scales?
- What is the **adaptive capacity** of UK food system stakeholders to transform to a sustainable phosphorus system?
- How can a transformed system be achieved? (what are the transition pathways?)
- What are the **barriers** and **opportunities**? (e.g. identify policy drivers to trigger action)
- Which measures are best implemented at **local/catchment scales**, and which at **national**?

Work Programme

WP1 Geophysical Constraints

- Understanding catchment P buffering capacity
- Inventory of secondary P resources
- 5R P stewardship optimisation

WP2 Socioeconomic Constraints

- Adaptive capacity assessment
- Economic analysis of P stewardship
- Co-design 5R management options

WP3 UK Vulnerability Assessment

- Establish multi-actor platform
- Risk pathway analysis
- National adaptation strategy
- Knowledge transfer

OUTPUT:

suite of strategies that are technically feasible, environmentally beneficial, socially acceptable, cost-effective and institutionally supported

National scale

Multi scale

Phosphorus Stewardship

P Circular Economy

Building on the principles of green chemistry:

- Developing benign systems
- Use of renewable materials
- Zero waste
- Use only what is necessary (output driven)

5R P Stewardship

.nan

Realign P inputs	 remove non-essential P inputs (e.g.additives and detergents) match P inputs to P requirements more closely utilise legacy P stores 					
	• optimise P input management					
Reduce P	• minimise P loss in runoff and erosion					
losses to	• deploy strategic P retention zones					
water	1, 0					
	• avoid wastage of P in the whole food chain					
Recycle P	 improve P utilization efficiency 					
in bio-	• integrate crop and livestock systems					
resources						
	a management Dire and signification					
	• recover P in societies wastes					
Recover P	• produce P fertilizer substitutes					
in wastes	 improve manure transportability 					
Wastes						
	• influence distant choice					
Redefine	• influence aleary choice					
P in the	• define end-user P requirements					
food	 reduce P requirements by genetic engineering 					
ala alia						

Withers et al. (2015)

Managing the Resilience of the Food System

Farm to Fork (P supply)

EU-27 Input: 2,392 Output: 1,468 Consumption 655 Losses HC Nf-Hc Fp-Hc 238 Hc-Nf Export NF 215 Non-food production Import NF Losses NF Nf-Fp 0 Hc-Fp Fp-Nf Nf-Ap Ap-Nf Export FP (216)-Food processing 338 339 Import FP Losses FP Cp-Nf Hc-Ap 12 Nf-Cp 162 Ap-Fp. Export AP Animal production 440 Import AP Losses AP Hc-Cp 17 Export CP **Crop production** 4)-+ 1,399 +924 84 Losses CP Import CP [Gg phosphorus / year in 2005]

Landscape (food and water security)

Van Dijk et al. (2016)

Secondary P Resources

The P Refinery (Hisao and Ohtake, 2014)

Key aspects:

- P availability
- Other elements
- Consistency
- Affordability

- Contaminants
- Legislative constraints

Managing Food System Phosphorus


```
System stores
govern the soil
P supply (PS))
```

requires legacy soil P management and prediction System synergies govern access to recyclable P (PR)

requires recovery technologies and integrated farming practices

PE – efficiency of applied P

Withers et al. (2018)

Assessing P Adaptations and Transformations

BAU – Business as usual

Option 1 – Recover 50% of point P

Option 2 – Reduce P demand by 25%

Option 3 – Reduce soil STP by 50%

Option 4 - Options 1, 2 and 3

P flow (Gg)	BAU	Option	Option 2	Option 2	Option
		-	2	3	4
Total P inputs	2392	1895	2063	1832	1141
Circulating P	5961	6458	4710	5961	5133
New stored P	924	924	810	420	360
Recycled P	1928	2425	1573	1928	1996
Total P losses	1217	720	1030	1160	573
Inputs as % of	40	29	44	31	22
circulating P					
Losses as % of	20	11	22	20	11
Circulating P					

Recovery and recycling does not reduce surplus P in the system and increases the amounts of P circulating! Need to consider *minimisation* of P inputs

Environmental Vulnerability

Eutrophication Impact

Doody et al. 2016

Catchment Input

Catchment Heterogeneity

(a)

200

180

160

140

Colebrooke sub-catchments Upper Bann sub-catchments

ough Neagh sub-catchments

compatible with acceptable water quality in all areas, but should be more feasible in well-buffered catchments!

Vulnerability Assessment

Cordell et al. 2017 – Sri Lanka

Phosphorus shocks and stresses

- The UK food system is exposed to phosphorus **shocks** (fast changes) & **stressors** (slow changes)
- Where the shock occurs (▲ or ●), is not necessarily where impact will be felt (transmission of impacts across other scales & sectors in the phosphorus value chain)

Adapted from Cordell et al (2015)

Stakeholder realm of influence & responsibility

- Where the risks occur (inside/outside UK food system), has implications for whether UK stakeholders have agency to **mitigate** risks, or simply facilitate **adaptation** to stressors and shocks, e.g.:
 - UK stakeholders cannot influence **international market price**, but can support market access to local renewable fertilisers
 - UK stakeholders can influence **dietary trends** to reduce UK demand for imported P
- Stakeholders' power to influence adaptation varies, e.g. **structural** power, **innovative** power, **antagonistic** power, **synergistic** power, **invisible** power (Avelino & Rotmans 2011, Brisbois & de Loë 2016, Gaventa 2006)
- Similarly, stakeholders' 'interest' can be aligned with or opposing adaptive strategies (e.g. waste managers may wish to recover energy from food waste, which can be aligned with recovering P from same process, e.g. AD)

Jacobs et al. (2017)

Promote dietary change Governance beyond the farm gate •

Transformative Change

Challenges

- Highly dispersed industries operating at variable scales
- Stakeholders have different perceptions of sustainability
- Lack of awareness of the phosphorus nexus and role of food choice
- No regulatory driver for more efficient P use
- Historic practices and behaviours hard to change

(i.e coping, incremental change)

Adapted from Cordell et al (2017)

Ignoring the P sustainability challenge may destabilise the resilience of the UK food system, and conversely, addressing it creates significant opportunities to buffer against future risks in the longer-term, and increase agricultural productivity in the short-term.

http://wp.lancs.ac.uk/rephokus/

Home Project Summary Meet the team Who funds us Study Catchments Publications Links & Resources

WHY IS PHOSPHORUS IMPORTANT?