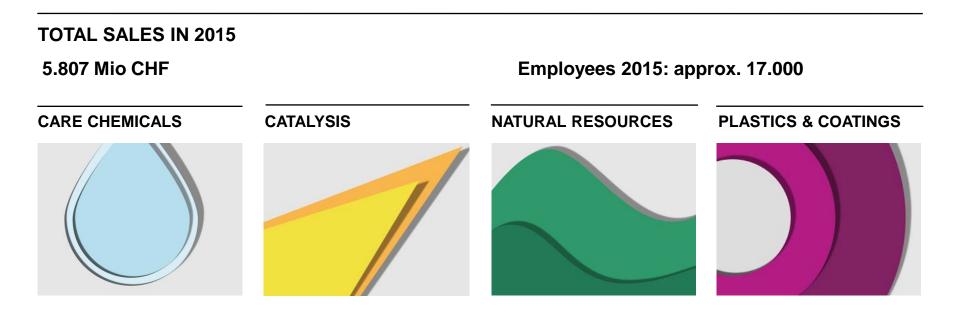
Sustainability in the Phosphorus Value Chain

P-BASED FLAME RETARDANTS AND FIRE RETARDED PLASTICS

Public

Dr. Wolfgang Wanzke BU Additives Sustainability Manager 24.11.2016


what is precious to you?

2

Clariant at a Glance

A global player in the specialty chemicals business

Strong commitment to sustainability:

In Collaboration with RobecoSAM 🐠

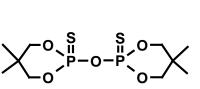
ROBECOSAM Sustainability Award Silver Class 2016

Clariant in the P Value Chain

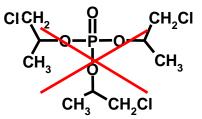
- Leading supplier of P-based flame retardants for engineering plastics and coatings
- Uses a few thousand tons of elemental phosphorus and intermediate products based on P₄ per year
- Flame retardant portfolio was developed to more sustainable products in several steps

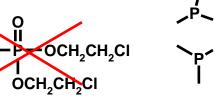
Our vision on sustainable FRs:

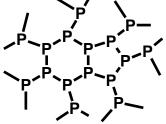
Phosphorus based flame retardants produced from recycled P with renewable energy, as part of a future circular P-economy



FR Portfolio Development@Clariant Step 1: Halogen-Phase-out


- Situation 1990ies: heterogeneous product mix based on Phosphorus and/or Chlorine based products
- Decision 1995 (when the business still was with Hoechst AG): phase-out of all halogenated Flame Retardants:
 - TCEP, TCPP


-CH₂CH₂


- Chlorinated Phosphate-Oligomers
- Chlorinated paraffines

CICH,CH,

Looking for the "Ideal Flame Retardant"

Basic Needs

- FR Performance
- Cost Performance
- Legal Compliance

Stable and safe processing

- no vapor pressure or volatility
- thermal stability
- low water solubility

Maintain properties over polymer lifetime

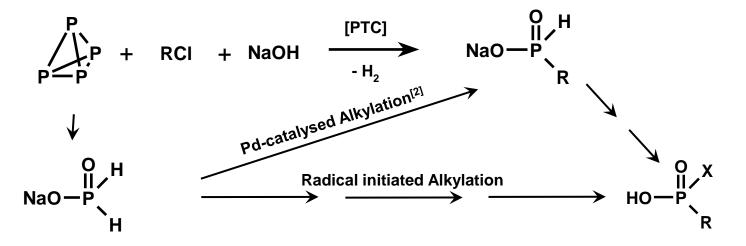
- no migration in polymer / no leaching
- low impact on mechanical properties

Ideal FR

Maintain properties of polymer

- minimal interference with polymer structure
- applicable in various polymers
- colorless

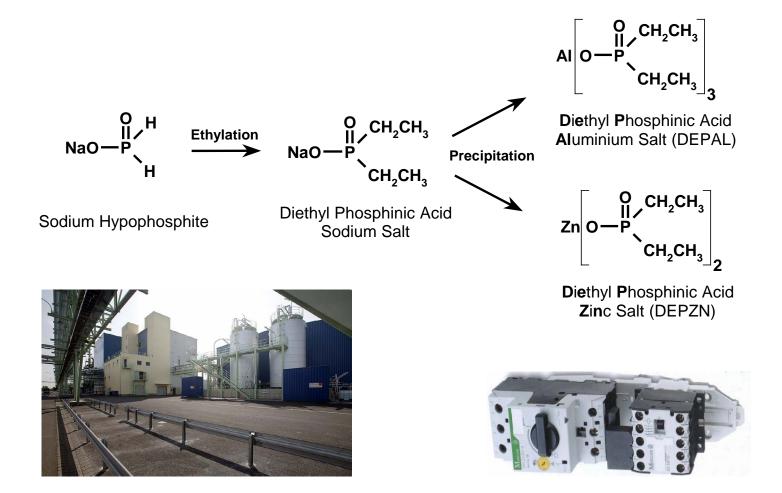
Halogen-free and safe FR


- no bioavailability
- no physiological activity
- sustainable

FR Portfolio Development@Clariant

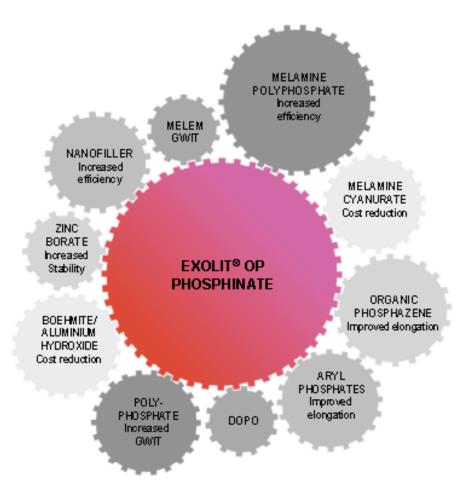
Step 2: Development of new sustainable P-FR-s – organic Phosphinates

• Exploration of Phosphinate Chemistry based on well available raw materials yellow phosphorus^[1] and sodium hypophosphite^[2]

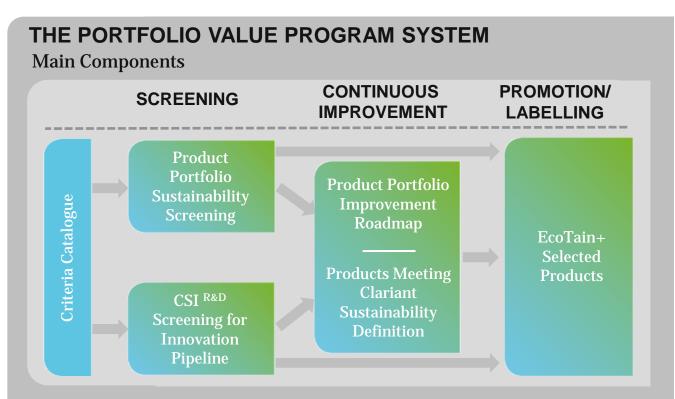


Disubstituted Phosphinic Acids

[1] Weferling, N., Sicken, M. and Hörold, S., Phosphorus, Sulfur and Silicon 177 (2002) 1757-1761
[2] Hill, M., Bauer, H., Krause, W., WO2009/010188


FR Portfolio Development@Clariant Step3: Commercialization of Diethylphosphinic acid derivatives

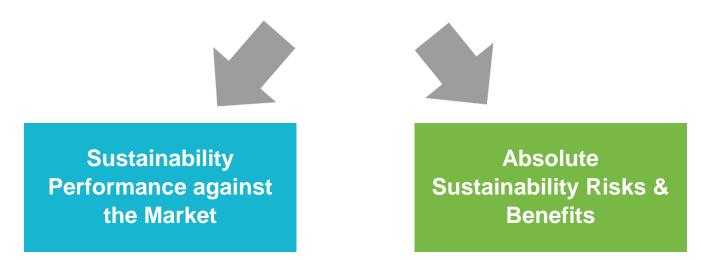
7


FR Portfolio Development@Clariant Step 4: Development of tailor made synergistic blends/recipes

- Exolit OP in combination with Nsynergists and Stabilizers is an important building block for the compounding industry
- Exolit OP 1240, Exolit OP 1260 for Polyesters
- Exolit OP 1230, Exolit OP 1311, Exolit OP 1312, Exolit OP 1314, for Polyamides

How Sustainable is our Portfolio ? A new system of evaluation

STAKEHOLDER AND THIRD PARTY INVOLVEMENT AND VERIFICATION


INTERNAL TRAINING AND COMMUNICATION

10

The Assessment Process

TWO "LENSES" ARE USED TO LOOK AT PRODUCT SUSTAINABILITY

- 36 criteria are applied following corporate guidelines and a criteria glossary
- Team effort with a maximum of product knowledge at the table and data mining
- 26 environmental criteria, 4 economical and 6 social
- The full life cycle of the products is addressed

The PVP System Rating Scale

PERFORMANCE OF PRODUCT GROUPING (relative to market standards)	SUSTAINABILITY BENEFITS AND RISKS OF PRODUCT GROUPING (in relation to the absolute nature of issue)	
Best-in-class performer	Sustainability Benefit	
Higher than market standard/average	Neutral	
Average	Medium/potential risk	
Lower than market standard/average	High risk	
Not applicable	Not applicable	
Data insufficient for assessment	Data insufficient for assessment	

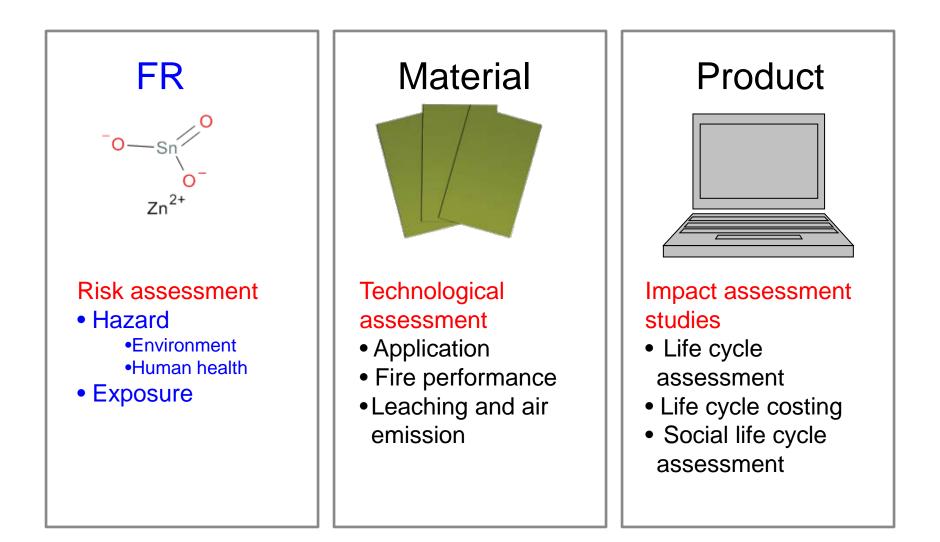
FR Portfolio Development@Clariant Step 5: PVP assessment and portfolio optimization

- Main FR Products have achieved the EcoTain[®]-Label:
 - Exolit OP 1230 (Aluminium diethyl phosphinate)
 - Exolit AP 422 (Ammonium Polyphosphate)
- Some FR grades with needs for improvements regarding sustainability
 - e.g. Synergistic blends containing Zinc Borate (Category 2 reproductive toxicant)

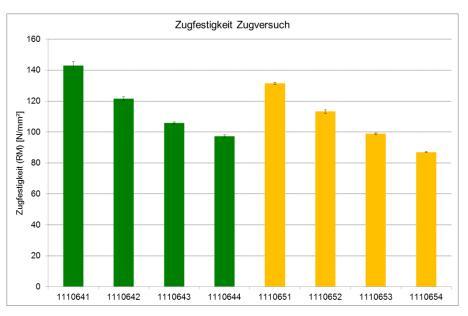
Replacement of Zinc Borate by non-classified products as part of a sustainability roadmap

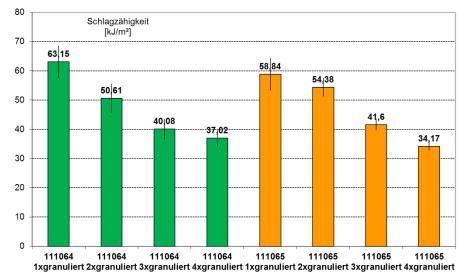
Development of new "P-P-Synergism" Exolit OP 1400

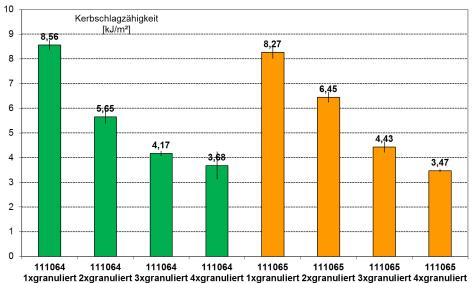
External Proof Points – e. g. Green Screen[®]


DfE to GreenScreen Translations	Final Benchmark Scores		
Antimony Trioxide (1309-64-4)	1 = Avoid - chemical of high concern		
Melamine Cyanurate (CAS# 37640-57-6)]	1 = Avoid - chemical of high concern		
N-alkoxy Hindered Amine Rx Products (CAS#191680-81-6)	1 = Avoid - chemical of high concern		
Phosphonate Oligomer (CAS#68664-06-2)	1 = Avoid - chemical of high concern		
Zinc Borate 1332-07-6, 138265-88-0	1 = Avoid - chemical of high concern		
Aluminum diethylphosphinate (CAS#225789-38-8)	2 = Use but search for safer alternatives		•
Aluminum Hydroxide (CAS#21645-51-2)	2 = Use but search for safer alternatives		
Melamine Polyphosphate (CAS#15541-60-3)	2 = Use but search for safer alternatives		
Poly[phosphonate-co-carbonate] (CAS# 77226-90-5)	2 = Use but search for safer alternatives		
Resorcinol Bis-Diphenylphosphate (CAS#125997-21-9)	2 = Use but search for safer alternatives		Recent
Red Phosphorus (CAS# 7723-14-0)	2 = Use but search for safer alternatives		Update
Substituted Amine Phosphate mixture (CAS# 66034-17-1)	2 = Use but search for safer alternatives		
Triphenyl Phosphate (CAS#115-86-6)]	2 = Use but search for safer alternatives		
Ammonium Polyphosphate (CAS # 68333-79-9)]	3 = Use but still opportunity for improvement		
Magnesium Hydroxide (CAS # 1309-42-8)]	3 = Use but still opportunity for improvement		-
Polyphosphonate (CAS#68664-06-2)	3 = Use but still opportunity for improvement		
Bisphenol A Bis-(diphenyl phosphate) (CAS#181028-79-5 and 5945-	U = not enough data for assessment		
33-5) (BAPP)			
Phosphoric acid, mixed esters with [1,1'-bisphenyl-4,4'-diol] and phenol;	U = not enough data for assessment		
BPBP (CAS#1003300-73-9)]			
	4 = Prefer - safer chemical		

Data gaps filled ! Aluminium diethylphosphinate is now benchmark 3 !

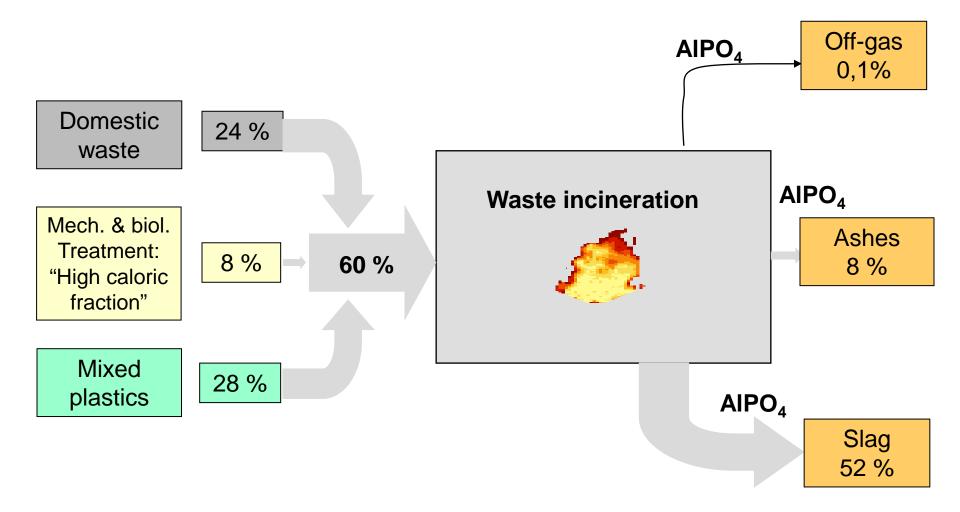

More Life Cycle Data – e. g. ENFIRO Project





End of Life Scenarios - Recyclability

PA 66	39,3	39,3
PA 6	10	10
Glass fibre HP3610	30	30
Stab. 1098/168*	0,2/0,2	0,2/0,2
Licowax E	0,3	0,3
Exolit OP 1312	20	
Exolit OP 1400		20



End of Life Scenarios - Incineration

Conclusion

Phosphorus based flame retardants like the presented phosphinates or ammonium polyphosphate

- have a very favorable sustainability profile as shown by internal and external investigations covering the life cycle of these products and flame retarded plastics made thereof
- Remaining life cycle issues are the
 - high energy consumption and the
 - green house gas emissions caused by the production of elemental P
- Both problems can be mitigated or solved, once phosphorus can be sourced from recycled phosphates and produced by using renewable energy