

BIOSOLIDS LAND APPLICATION AND FOOD CROP QUALITY ASSURANCE SCHEME

WHAT IS BIOSOLIDS COMPOSITION ?

MAJOR BENEFITS OF BIOSOLIDS LAND APPLICATION

Biosolids land application allows:

- soil replenishment in organic matter
- crop nutrition and mineral fertilisers savings
- climate change mitigation
- local development of the circular economy

SCIENTIFIC FINDINGS

Decades of research worldwide and long term experiment have concluded that recycling of biosolids has consistently positive outcomes.

SCIENTIFIC FINDINGS

- ★ In nearly all situations the Biosolids fertilizer gave similar crops yields to those obtained from the application of ammonium nitrate fertilizer (CORDIS)
- ★ Pollutants present in Biosolids do not pose a significant threat to crops (CORDI\$
- ★ Organic micro-pollutant concentrations returned to background concentrations within a year (CORDI\$
- ★ Uptake of organic pollutants by plants is considered to be negligible (CORDI\$
- ★ Long-term amendment with Biosolids (equivalent to more than 100 years of application) had minimal effect on plant uptake of potentially toxic elements (CopenhagenUniversity).
- ★ Repeated Biosolids land application increases crop yield and soil organic matter (CopenhagenUniversity).

★ Input of Biosolids enhances soil properties proportionally to the application rates and/or frequency amounts (CopenhagenUniversity).

SCIENTIFIC FINDINGS

- ★ Soil microbial community did not appear to be adversely affected by 20 yearsof land application of Class Biosolids (Arizona State University).
- ★ Increaseof organic matter rate following Biosolidscompostland application results in the improvement of soil physical (structure and water availability) and biological properties (diversity and size of microbial populations) This contributes to a higher nitrogen availability for crop production(INRA).
- ★ Monitoring of microbial population and analysis of organic contaminants demonstrate that repeated biosolids compost land application have no health impact on soils and crops (INRA).
- ★ Follow up of 13 pharmaceuticals following land application of different organic waste including Biosolids show a very limited eco-toxicological risk: the accumulation of these compounds in soil is very limited and their concentration froundwaterare verylow (INRA).

CONVERGING RISK ASSESSMENT RESULTS

Imperial College London

Vitenskapskomiteen for mattrygghet Norwegian Scientific Committee for Food Safety

di CATANIA

INE-RIS

maîtriser le risque pour un développement durable

CANADIAN WATER NETWORK RÉSEAU CANADIEN DE L'EAU

CONVERGING RISK ASSESSMENT RESULTS

- ★ The aggregate risk from Biosolids use or disposal in the US is especially low (US EPA).
- Recycling sewage sludge on farmland as a soil conditioner and alternative fertiliser within current guidelines is a safe and sustainable practice (Imperial College London).
- VKM considers the use of sewage sludge to constitute a low risk to the soil ecosystem ; Most of the estimated exposures are well below any predicted effect concentration(Norwegian Scientific Committee for Food Safety).
- Land application of sewage sludge and composted sewage sludge, in regard of assumptions and exposure scenario of this study, is presenting a related risk significantly under the limit values (INERIS-CNRS).
- Obtained results showed that the use of Biosolids results in a low health risk (Catania University).

Compliance with local regulation

- Product sheet accompanying biosolids deliveries shall include a statement of compliance with local regulations.
- Biosolids management under quality assurance

Biosolids monitoring and traceability per batches of no more than 2000 tons (maximum once/month).

Maximum PTE levels in biosolids

Compound	Unit	Composted Biosolids	Other Forms of Biosolids	
TRACE ELEMENTS				
Cadmium	mg/kg DS	2	4	
Chromium (total)	mg/kg DS	80	160	
Mercury	mg/kg DS	1	2	
Nickel	mg/kg DS	50	100	
Lead	mg/kg DS	120	240	
Arsenic	mg/kg DS	40	80	
Copper	mg/kg DS	300	600	
Zinc	mg/kg DS	800	1600	
ORGANIC COMPOUNDS				
PAH 16	mg/kg DS	6	12	
PATHOGENS				
Salmonella	CFU	Absence in 25 g or 25 ml		
E Coli or Enterococcacae	CFU	1000 in 1 g or ml		
IMPURITIES				
Marcroscopic impurities (glass, metal, plastics > 2 mm)	g/kg		3	

Maximum PTE addition to soil

Compound	Unit	Maximum flow	
TRACE ELEMENTS			
Cadmium	kg/ha/yr	0,01	
Chromium (total)	kg/ha/yr	0,4	
Mercury	kg/ha/yr	0,005	
Nickel	kg/ha/yr	0,25	
Lead	kg/ha/yr	0,6	
Arsenic	kg/ha/yr	0,2	
Copper	kg/ha/yr	1,5	
Zinc	kg/ha/yr	4	
ORGANIC COMPOUNDS			
PAH 16	kg/ha/yr	0,03	

Communicating on the beneficial use of Biosolids:

- resources savings certificate delivered to final users
- GHG balance per farm (emissions avoidance + C sequestration).
- Use of the sustainable fertiliser brand logo on any

documentation delivered to third party.

SUPPORTERS OF THE BIOSOLIDS ALLIANCE QAS

THANK YOU FOR YOUR ATTENTION