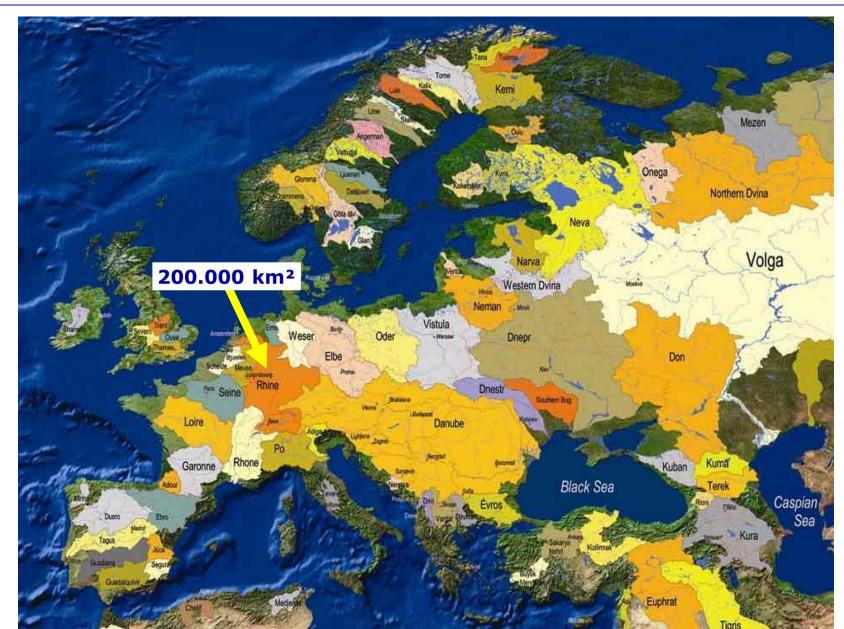
The Rhine: Managing a European river

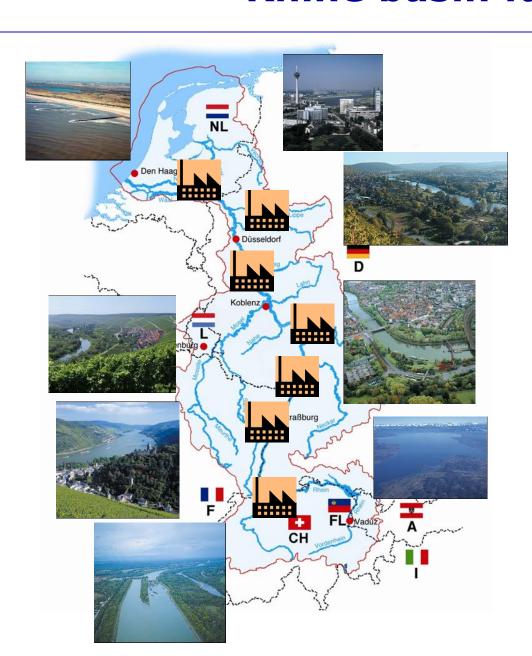
Dr. Tabea Stötter

Internationale Kommission zum Schutz des Rheins


Commission Internationale pour la Protection du Rhin

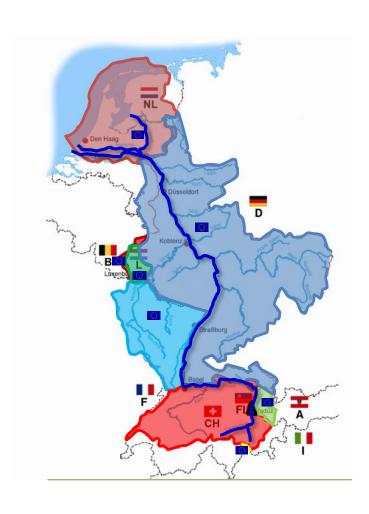
> Internationale Commissie ter Bescherming van de Rijn

International Commission for the Protection of the Rhine


River Rhine: a European river

Rhine basin facts

Main stream Length: 1233 km


60 million inhabitants in 9 countries

Drinking water supply for 30 million people

Europe's most important navigation route (825 km)

ICPR (founded in 1950)

The Netherlands

Germany

France

Luxembourg

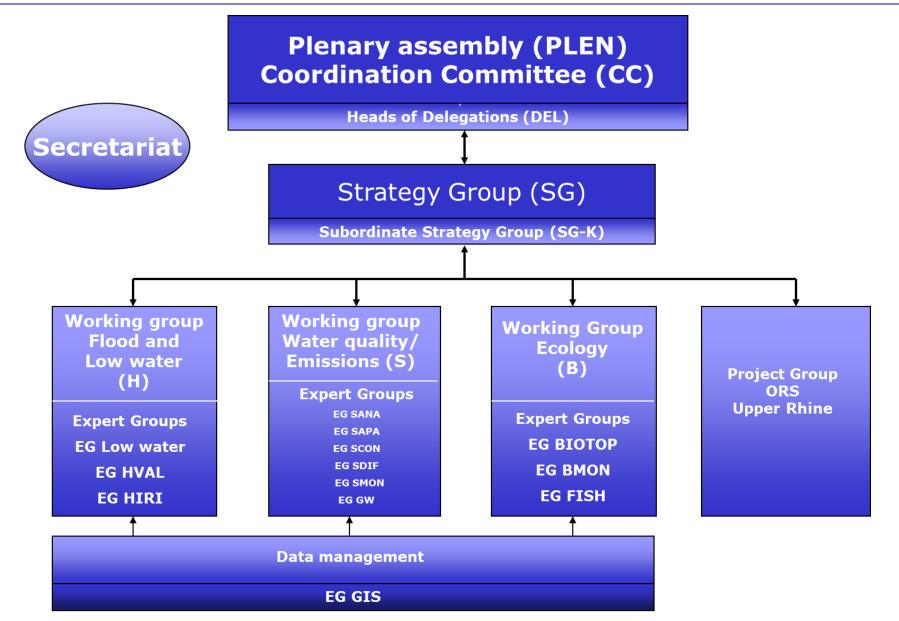
Belgium/Wallonia

Switzerland

Austria

Liechtenstein

Italy


European Union

(Members of the ICPR are underlined)

> Since 1995 Stakeholder involvement, IGOs and NGOs with observer status

ICPR: How are we organized?

ICPR: How does cooperation work?

- Intergovernmental organization
- Cooperation based on legally binding conventions
- Delegations
 - political mandate
 - technical know how
 - provide common budget(1.2 Mio €/a for secretariat only)
- Decision making by consensus. Measures as recommendations to countries, no sanctions

- Obligation to report on implementation of measures
- Legal framework: EU Directives (WFD and FD) and national legislation
- Small neutral secretariat with technical & scientific knowledge, 3 working languages & English

ICPR: Landmarks

First Phase 1950 – 1970/80: Monitoring network (CH - NL), building trust and mutual understanding;

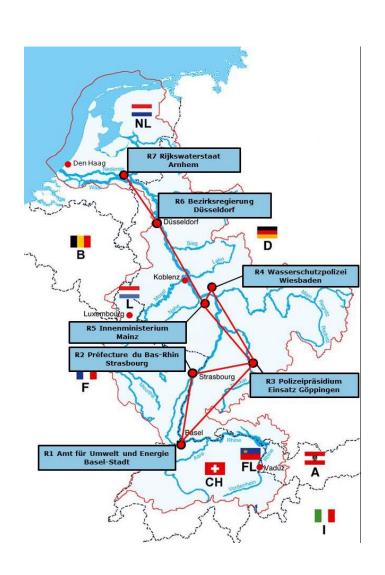
- convincing society; wastewater treatment plants
- >1986 Accident at Sandoz (CH)
- >1987 Rhine Action Program + "Salmon 2000"
- >1993 + 1995 "Century floods" on the Rhine
- >1998 Action Plan on Floods
- >2000 Program Rhine 2020
- >2000 EU Water Framework Directive
- >2007 EU Floods Directive

The turning point 1986: Fire at Sandoz, Basel (CH)

"Rhine action program" (1987-2000)

"Salmon 2000"

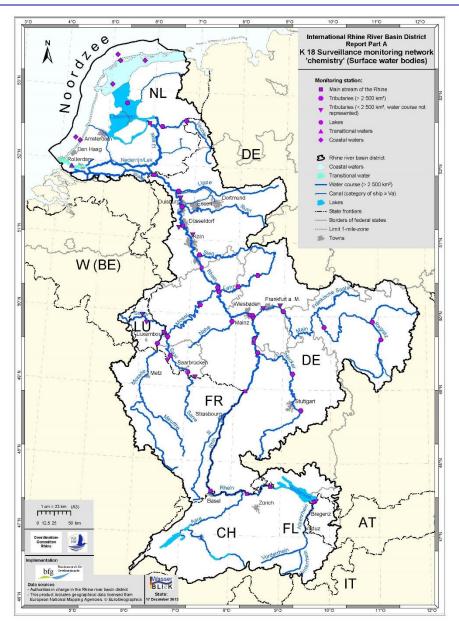
Rhine Action Program - Goals


- Guarantee drinking water production
- Reduce direct inputs of toxic substances by 50% 70% (1985 1995)
- Reduce accidental spills for example by constructing collecting basins for fire extinction water
- Improve warning and alert systems
- Improve ecosystem: Reintroduce vanished fauna species (salmon)

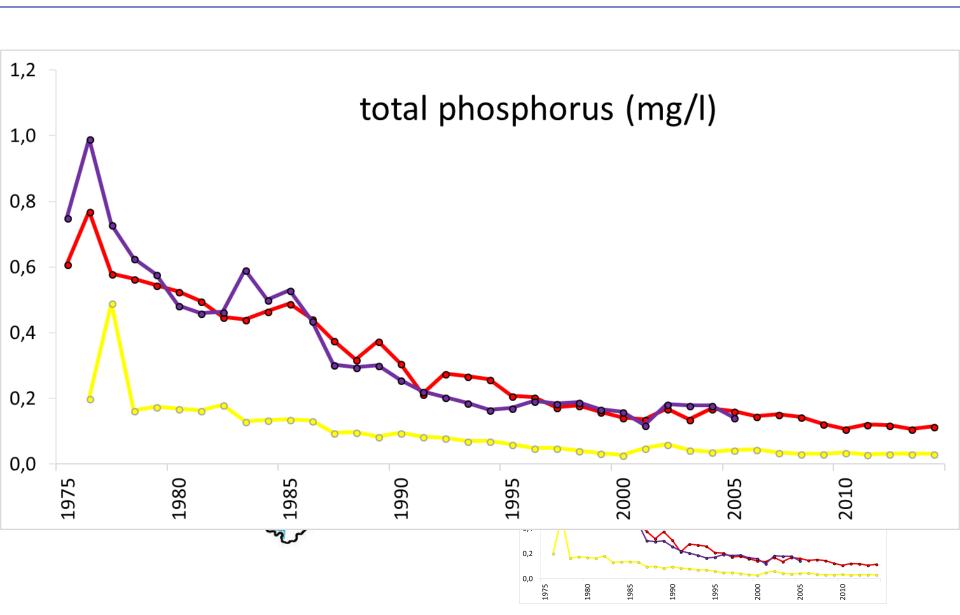
European Provisions, e.g.

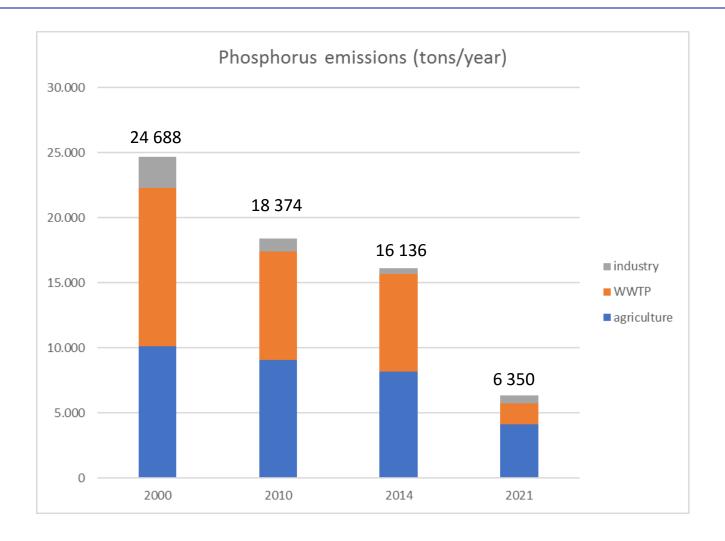
- European Urban Wastewater Directive (91/271/EEC)
- European Nitrates Directive (91/676/EEC)
- Not valid for Switzerland

Warning and alert plan

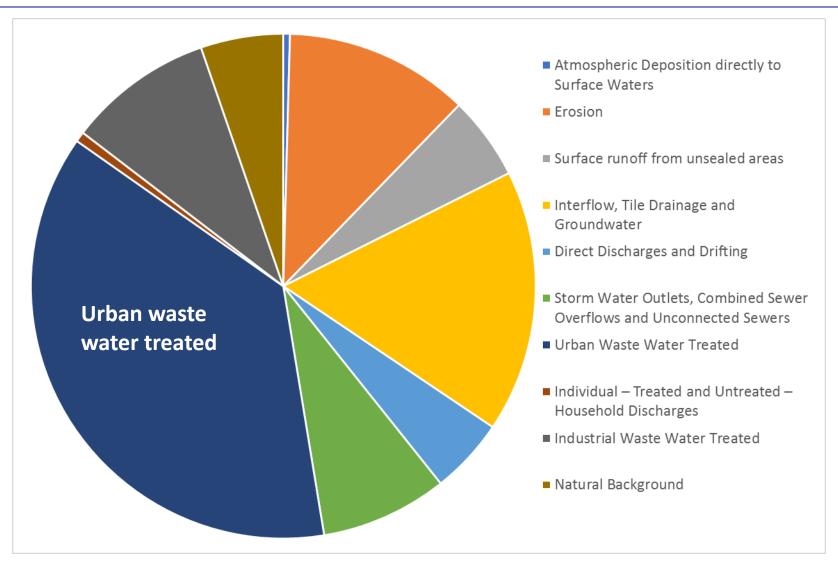

Tanker accident (MV Waldhof) 13th January 2011 No navigation for 5 weeks

Water quality monitoring




Water quality improvement

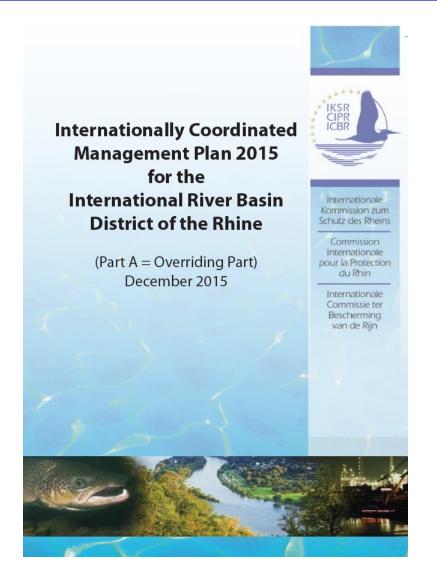
Phosphorus emissions



Based on data and projections of the countries (RBMP 2015)

Phosphorus emissions in 2000

Emission pathways in 2000 (ICPR report 134)


Water quality improvement

- > Solidarity in water quality improvement
- Common efforts of
 - √ governments, administrations
 - **√** industries
 - √ municipalities/population
- Since 1975, € 80 bn. invested in wastewater treatment plants within the Rhine catchment → 96% of population connected

EU Water Framework Directive (WFD)

Target: "good status" of rivers

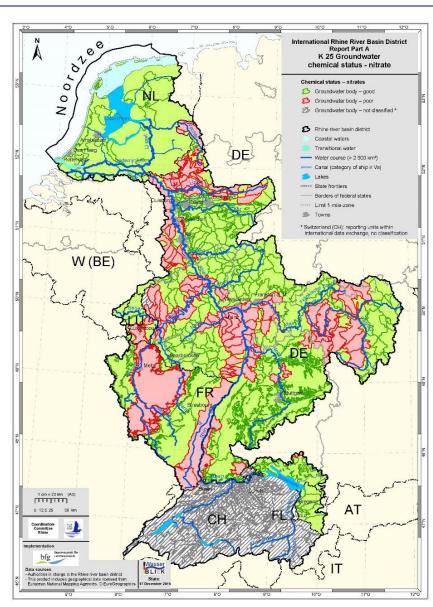
→1st River basin management plan 2009-2015

→2nd River basin management plan 2016-2021

Management plan 2015

Total phosphorus and ortho-phosphate-phosphorus

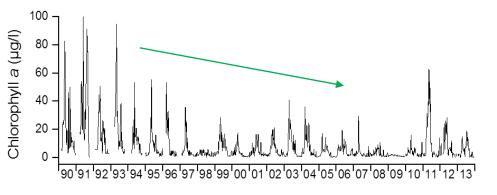
- Exceedance of national thresholds at certain monitoring stations of part A, as in many smaller waters in the catchment
- > Reason: wastewater and diffuse inputs


Physico-chemical pars substances relevant for of the List of R	the Ri	nine a	nd s	ubstances	- *	In e Low no d no n Coas 1-m	er tl lecis neas stal ile z	nan l ion p surer wate one:	EQS poss men ers c : No	/gui sible ts av outsi clas	idan e bed vaila ide t	ce va auso ble he atio	alue e of	too l		limit	of d	letei	rmin		1							ers"		
				River	Ach near Breger	Rhine									Neckar		ar	Weschnitz	Schwarzbach	Main				Regnitz	Kinzig	Nidda	Nahe	Lah		
				Monitoring station no.			5	1	2	7 1:	1 12	13 3	32 3	4 35	41	43 42	8	9	10	31	28	54	24	23	25	55	26	27	19	29 3
State: December 2015				Name of the monitoring statior	Fussach	Fussach/Alpine Rhine	Öhningen	Rekingen	Weil am Rhein	Worms	Mainz	Koblenz	Bad Honnef Düsseldorf-Flehe	Bimmen	Lobith	Kampen Maassluis	Deizisau	Kochendorf	Mannheim	Biblis-Wattenheim	Trebur-Astheim	Hallstadt	Erlabrunn	Kahl a. Main	Bischofsheim	Hausen	Hanau	Nied	Dietersheim	Solms-Oberbiel
Substance	CAS No.	Value (WFD- Codelist)	Unit	Status WFD resp. list of Rhine substances (rhr)																										
Physico-chemical parameters (supporting the assessment of th according to WFD, Annex V	e ecolog	ical stat	e/pol	tential)																										
Dissolved oxygen	n.a.	321	ma/l	Annex V																										
Water temperature	n.a.	226	°C	Annex V																										
oH	n.a.	322 330	- 1	Annex V	322	300			346 3	64	100	416 6	505 59	0 710			746	794	777	65	903	510	CE4	647	CE4	566	467	787		408 4
Conductivity	n.a.	97	uS/cm mg/l	Annex V Annex V	322	300			340 3	0-4	402	410 6	303 39	0 /19			/46	794	///	00	903	510	054	047	034	300	407	/0/	452	408 4
Ci Fotal nitrogen	n.a.	2	mg/l	Annex V Annex V	-	-	0,7		1.4 1	.8 1.9	9 2.0	2.3	2,7 2,	3 2.8			4,6	5.0	4,7	4,46	4,19	4	4,5	4,3	4.53		2,83	3,66	3.0	3,46 3,
liteate nitrogen	11.d.	228	mg/I	Annex V			-7-		-/-		2,0		-,-	2,0			-,,0	2,3	-4-	.,	.,,		.,	-,	.,		-100	5,55		3,10 3,
Orthophosphate phosphorus	n.a.	227	mg/l	Annex V																										
		3	ma/l	Anney V	0.05	0.11																								
otal phosphorus																														
otal phosphorus One or more national classification	n criteri	a out of	limit			i			Ť	Т	Τ													Ť						

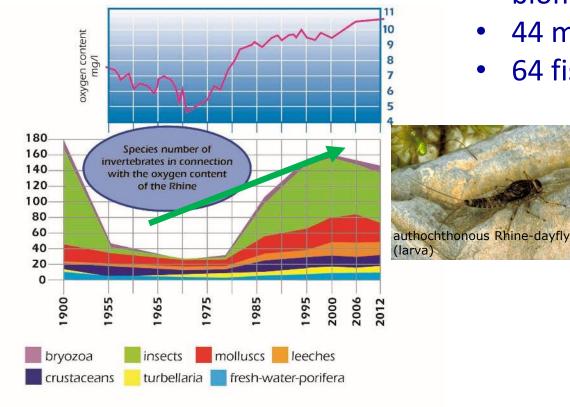
Management plan 2015

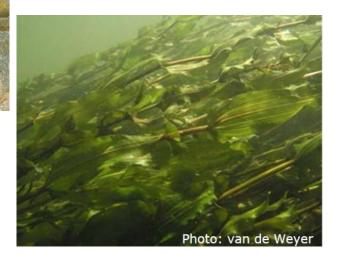
Nitrogen

- ➤ Important → source of coastal water pollution (Wadden Sea)
- Figure > ICPR agreement: 15 20 % reduction of nitrogen load (Rhine → North Sea + Wadden Sea) → achieved: 15 % reduction since 2000
- Concentrations still above the Dutch guidance value
- ➤ **Groundwater**: nitrogen inputs of the upper main aquifer → most important problem
- → diffuse inputs getting more important → further reduction only possible in cooperation with agriculture


Management plan 2015

- ➤ Important instruments for the further reduction and avoidance of nutrient emissions: **nitrates directive** (91/676/EEC), **urban waste water directive** (91/271/EEC) and, IPPC directive on industrial emissions (2010/75/EG)
 - + implementation of additional political programmes, such as the **Rhine Action Programme** and OSPAR recommendations
 - → distinct reduction of phosphorus and nitrogen concentrations in the entire catchment area during the last decades


Results Linking water quality and ecology



Long-term trends

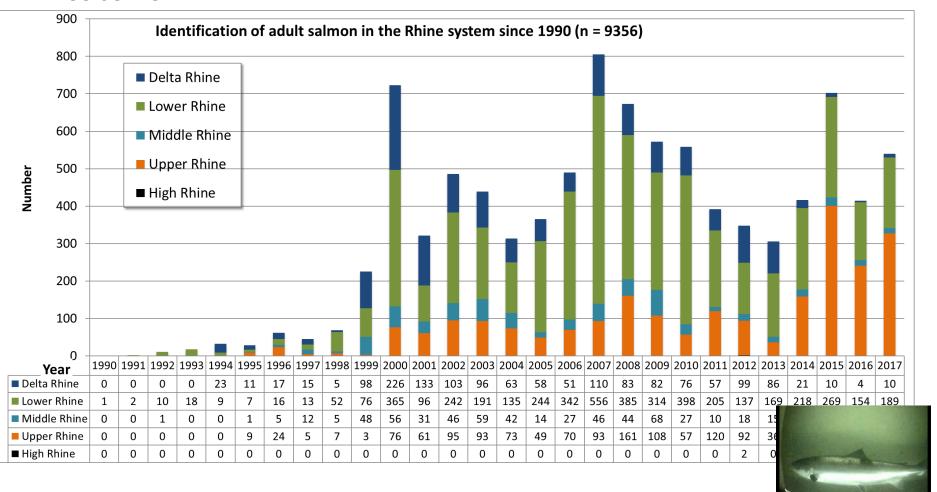
- Increased diversity of invertebrates
- decrease of phytoplankton biomass
- 44 macrophyte species
- 64 fish species

Master Plan Migratory Fish Rhine (2009)

Goal: self sustaining, stable populations of migratory fish in the Rhine catchment as far as Basel (CH)

Measures:

- River continuity in the program waters
- Restoration of habitats
- Stocking (i.a. salmon, allis shad)


Costs 2000-2015: € 627 MIn

Salmon is back in the Rhine!

- Since 1990 more than 9000 salmon have been identified in the Rhine system!
- Salmon as symbol ... but other migratory fish (allis shad, houting) are on the rise as well

Transboundary flood risk management Why?

✓ Dec. 1993 and Jan./Feb. 1995: Cities flooded in Germany and The Netherlands

- ✓ Action Plan on Floods (1998) (4 action targets: reduce damage and water levels, improve flood forecast and risk awareness)
- ✓ 1st Flood Risk Management Plan (2015) (EU Floods Directive)

Future challenges

Adaptation to climate changes (changes in runoff and temperature, storm rain)

Water quality: New substances (micropollutants), microplastics

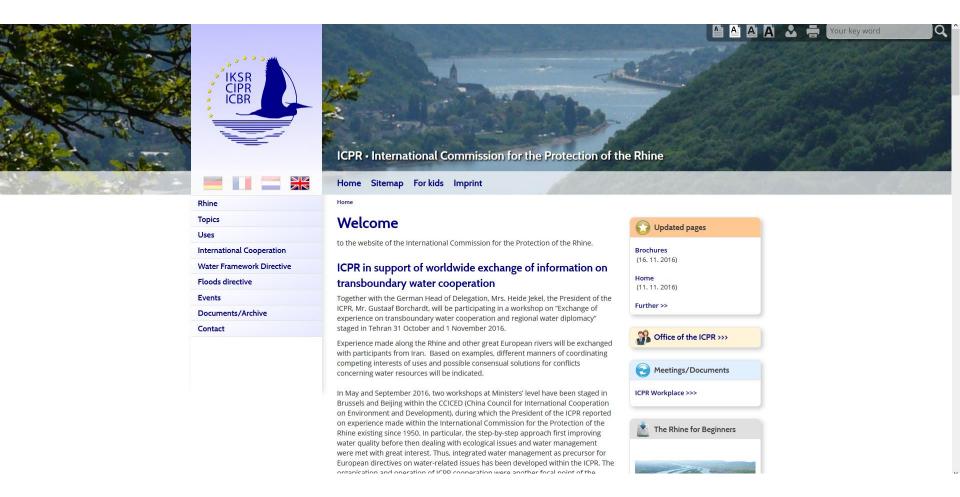
Contamination of fish

Ecological continuity: Migration of fish up- and downstream

Conclusions

- The story of the river Rhine is a success story given the improvements achieved in its water quality and biodiversity.
- Nonetheless, new challenges are ever present such as effects of climate change and micropollutants.
- Success can be explained by
 - →the institutional governmental framework for cooperation of states and involvement of stakeholders through ICPR
 - → pressure/acceptance from the **public**
 - →building common trust;
 - →identifying common interests;
 - →defining common goals, reinforced through a recognizable objective/symbol (Salmon)
 - → open and transparent **communication**

andPatience.


European Riverprize 2013, Vienna (Austria) & International Riverprize 2014, Canberra (Australia)

www.iksr.org

tabea.stoetter@iksr.de