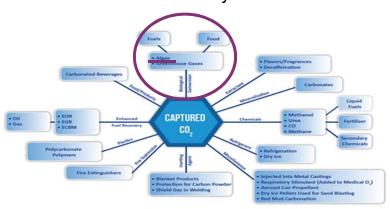


Overview of CO₂ capture in the cement industry using microalgae and their subsequent uses

Frédérique Ferey, LafargeHolcim Innovation Center


ESPP webinar on regulatory questions for nutrient recycling from waste-derived algae 22 March 2021

Global CO₂ emissions and Trends

Global energy-related CO₂ emissions

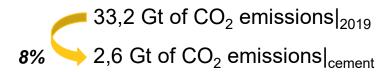

 33,2 Gt of CO₂ emissions in 2019, 6-9% coming from the cement industry

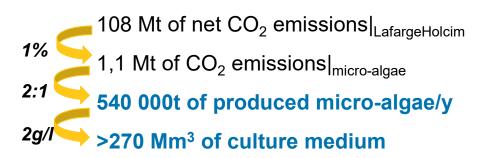
 Biological conversion of CO₂ (micro-algae) is now part of the portfolio for the cement industry (GCCA*, ECRA**)

65% of CO₂ emissions for the cement industry are geogenic ones

 All CCUS will count 18-24% of the CO₂ reduction by 2060 in the cement industry sector

IEA (2019), Transforming Industry through CCUS, IEA, Paris https://www.iea.org/reports/transforming-industry-through-ccus


*gccassociation.org/sustainability-innovation/health-safety-cement-innovation/carbon-capture-and-utilisation/ **H. Hoppe, european cement research academy 2020


Macro-figures dealing with micro-algae in cement industry

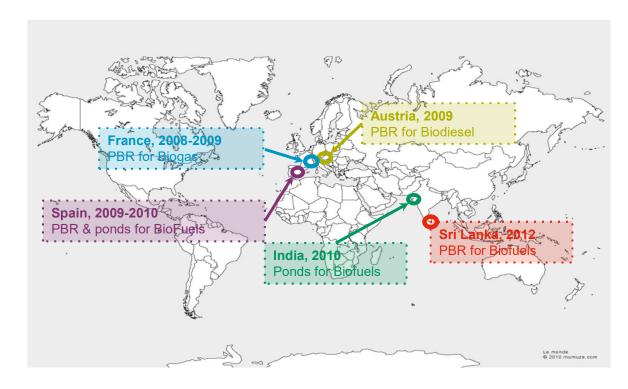
LH Net zero pledge

From CO₂ emissions to biomass

Around 540 km² (i.e. a square of 23 km side) for raceways of 50 cm height

LafargeHolcim

Experience of LafargeHolcim with microalgae


Investigations from 2006

Several culture technologies

- Ponds
- Tubular PBR
- Columns

Several seawater & marine micro-algae species

- Chlorella vulgaris
- Chlorella emersonii
- Dunaliella tertiolecta
- Emiliana huxleyi
- Thalassiosira Weissflogii
- Isochrysis galbana
- Nannochloropsis oculata
- · Scenedesmus sp.

