Potential of soil phosphorus saturation index for evaluating crop yield and leaching risks

Yu Gu Wim De Vries, Gerard Ros, Qichao Zhu

Research objectives of long-term P addition experiments

Objectives:

- Assess impact of long-term fertilization on total, reactive (Oxalate P, Olsen P) and soluble P (CaCl₂ P).
- 2. Evaluate how crop yield and environmental risks respond to legacy P.
- 3. Evaluate if P saturation index (PSI) is a good risk indicator to crop yield (agronomic impacts) and leaching (environmental impacts).

(NB: PSI = ratio P oxalate /(Al + Fe) oxalate, used as environmental P indicator. Currently there are different agronomic P indicators)

Set-up of the experiments at Qiyang experimental station

Basic Information

Experimental Period	1990-2017
Cropping system	Winter Wheat-Summer Maize
Rainfall (mm)	1407
Soil Type	Acidic Soil

WAGENINGEN UNIVERSITY

WAGENINGENUR

Initial Soil Properties	
Clay content (%)	61
soil pH(1:2.5)	5.7
SOC (g/kg)	6.7
Olsen P (mg/kg)	13.9
Total P (mg/kg)	450
PSI	0.03

Mean annual P input under different fertilization

Treatments	Total P input (kg P/ha/yr)
СК	0
NP	52
NPK	52
NPKM	215
1.5NPKM	320
Μ	227

Impacts of P surplus on different soil P indicators

- When P surplus was near 2000 kg P/ha, added P did not fully accumulate and was lost by leaching (see A)
- When P surplus was near 3200 kg P/ha, reactive P pools (Oxalate P< Olsen P) were saturated (see B)
- The soluble P (CaCl₂ P) increase continuously with P surplus (see C)

PSI is a good indicator for risks to crop yield and leaching

PSI can well evaluate the impact of soil P on both crop yield and leaching risks, but challenge is to enhance crop yields at lower PSI by improved management

Thank you !

