Phosphorus in industry and society

Willem Schipper

world usage of phosphorus

fertilizers

- main use of phosphorus worldwide
- P indispensible to life
- energy
- DNA
- bones

DNA

your body gets its energy here

with phosphate

> without phosphate

Fertilizers

most commonly used fertlizer ingredients (P)

- phosphoric acid (MGA)
- MAP
- DAP
- TSP
- (SSP)

feed phosphates

- animal husbandry
- animals need P to exist AND grow
- P in fodder not sufficient and not all digestible
- feed additives needed
- MCP, DCP, mixtures
- about 5% of P use

linked to manure issue

phytic acid (largely non-digestible but rich in P)

value chain for phosphorus

P₄ - the key to P chemistry

- made in submerged arc furnace process
- not unlike a blast furnace
 - submerged arc furnace

the phosphorus production process

Tennessee Valley Authority P furnace, 1942

Phosphorus family tree

Willem Schipper Consulting

uses of P_4 as such

limited:

- military (incendiaries, e.g Hamburg 1943)
- smokescreens
- rat poison (obsolete)
- homeopathy

Emsley J; The 13th Element: The Sordid Tale of Murder, Fire and Phosphorus; Wiley and Sons: New York, **2000**

glyphosate

 $P_4 \rightarrow PCI_3$ PCI₃ + IDA + CH₂O -> glyphosate

most sold herbicide worldwide

blocks 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (shikimate pathway to amino acids)

<text>

US EPA 2000–2001 Pesticide Market Estimates

concerns about brominated flame retardants

phosphate based alternatives

Weil, E.D.; Levchik, S.V.; Flame Retardants for Plastics and Textiles; Hanser, München 2009

phosphonates

- P analogs of EDTA etc
- chelating agents
- industrial water treatment, RO, detergents

Li ion batteries

- P compounds in battery
- conductivity
- Li storage

LiPF₆ and LiFePO₄

engine oil additive ZDDP

increases wear resistivity; antioxidant

 P_2S_5 + iPr-OH + ZnO -> Zinc O,O'-diisopropyl dithiophosphate

Ρ

electroless nickel plating

 P_4 + NaOH -> NaH₂PO₂

NaH₂PO₂ + Ni salt -> Ni layer

Actually Ni / Ni₃P

A. Wurtz; Compt. Rendus Acad. Sc. 1844, 18, 702

FOOD

solid acid for baking powder

emulsifying agent

moisture retention in cooking

acidulation

Na, K, Horthophosphates pyrophosphates tripolyphosphates *blends*

• • •

metal extraction

separation of cobalt from nickel

most of the world's cobalt is produced by using this chemical

catalysis

phosphine chemicals are essential parts of catalysts

e.g. phobane in hydroformylation

major pathways in petrochemistry

phobane

osteoporosis drugs

A REPORT OF A R

And the second second second second second second

drug synthesis

ring closure for the production of APIs

Quetiapine

treatment for schizophrenia and depression

asphalt additive

polyphosphoric acid

to improve asphalt characteristics under extreme circumstances

Closing the loop

P stewardship in technosphere (P₄) and biosphere not independent

Recycle streams into technosphere P (white phosphorus ----- P rock replacement)

Phosphorus product routes

surprisingly, P₄ derivatives P ends up in five broad categories only

white phosphorus – sustainable?

- P essential use = agriculture, it should perhaps be "reserved" for that?
- however only 2% of P is used in true P₄ chemistry
- 2% more P use efficiency can probably be achieved more easily in agricultural applciation improvements and reducing meat consumption (feed phosphate – 5 to 10% of total)
- consider cradle-to-cradle design for P chemicals (e.g. recycle flame retarded plastics as such) – leading C2C principle: use freely and reuse, instead of abandon uses and forbid applications, therefore a limit on non-agricultural uses of P does not seem needed at this point

Thank you for your attention!

Willem Schipper

Consulting for phosphorus, P derivatives, phosphoric acid and phosphates

Technology development, market studies

General ryclinging and sustainability

Innovation mamagement

www.linkedin.com/in/willemschipper

wsconsulting@zeelandnet.nl