Please subscribe www.phosphorusplatform.eu/Subscribe
Link to www.phosphorusplatform.eu/eNews089
Download as PDF
120 abstracts received. With three European Commission services, United Nations, industry & experts from Europe and worldwide. Site visits to industrial nutrient recycling, digestate processing (Fertilizantes del Ebro, biogas installations). ESPC5 follows on from ESPC4 Vienna, 2022 which, with 320 participants onsite and 80 online, was the biggest conference on phosphorus ever worldwide. Join us for this unique networking, industry, policy and science event.
Updated programme, registration, site visit details: https://www.phosphorusplatform.eu/espc5
Birdwatching in Spain after ESPC5. Some of us will be taking a long weekend birding on the Spanish steppes around Lleida after ESPC5. Anyone interested in joining, contact
The European Water4All partnership has announced a Joint Transnational Call (c. 36 M€) for research and innovation projects to improve long-term water security, including resource recovery and valorisation.
The “Water for Circular Economy” call, backed by 36 funding agencies from Europe and outside, will be announced on September 12, 2024, with a total budget of c. 36 M€. The deadline for submitting pre-proposals is November 2024, and the projects will have a duration of 36 months. Research proposals must address at least one of the following themes: enhancement of water circularity in industries; urban water circularity; resource recovery and valorisation; economic, environmental and social implications of water reuse and recovered products. Project outcomes should contribute to the development of evidence-based water management policies and strategies at global, EU, and national levels, within the frameworks of the Green Deal, Water Framework Directive, Just Transition and UN Sustainable Development Goals.
Water4All 2024 Joint Transnational Call Pre-announcement.
CRU have announced that Phosphates 2025 (31/3/25 – 2/4/25, Orlando) will also cover potash. A call for abstracts is opened to 27th September 2024. Themes will cover all aspects of the potash industry (as is the case for phosphates, for which CRU Phosphates is “the” annual industry & technology meeting place): mining and resources, beneficiation, fertilisers, environmental aspects of production management, sustainability.
Abstracts of 200-400 words should be sent to
Phosphates 2025 website: https://events.crugroup.com/phosphates/home
BETA Technological Center, Vic (Barcelona), Spain, is recruiting: "Senior Technician for the management of competitive projects in the field of governance". Application deadline 1st September. The selected person will be responsible for the implementation and technical management of the Horizon Europe CSSBOOST project.
Information: https://utalent.uvic.cat/index.php/Sollicituds/Vista/index/AD/11328
DPP, the German Phosphorus Platform, is for the second year offering a 1000 € prize for a German bachelors or masters thesis on phosphorus recycling. The degree must have been obtained in Germany. The prize will be attributed at DPP’s annual meeting (DPP Forum), Frankfurt-am-Main, 23rd October 2024. The first (2023) DPP thesis prize was awarded to Jannik Mühlbauer (TU Dresden) for his thesis “Laboratory studies on thermochemical sewage sludge treatment”.
Application (letter of motivation, CV, diploma, supervisor’s report, in one pdf file) plus the final thesis, must be sent by 1st September to
DPP Forum, 23rd October 2024 https://www.deutsche-phosphor-plattform.de/aktuelles-forum/
The four year 2024-2028 ReLEAF project is funded by the Circular Bio-Based Europe Joint Undertaking (CBE JU) to test efficient, safe, and sustainable bio-based controlled release fertilisers. The project has 17 partners from 9 countries, 6.5 M€ allocated EU funding, and is coordinated by Leitat technological centre, Spain. The project aims to valorise several bio-wastes widely available in Europe (sewage sludge, fish processing wastewaters and sludge, mixed food wastes, and agri-food wastes) to obtain fertilising ingredients, biostimulants, and bioplastics that will allow to obtain 100% bio-based controlled release fertilisers and fertiliser-functionalised horticulture elements (mulching films and planting pots). The ReLEAF products will be tested on different soil and climate conditions to demonstrate their efficiency and safety. ReLEAF aims to close the nutrient cycle, while promoting a sustainable agriculture in Europe, fully aligning with the ESPP’s objectives. ESPP membership will facilitate knowledge sharing, clustering and networking, to accelerate uptake of ReLEAF solutions and widen the project impact.
More information: https://www.linkedin.com/company/releaf-project-eu/
http://releafproject.eu/ (under construction)
Circular Bio-Based Europe Joint Undertakinghttps://www.cbe.europa.eu/cbe-ju-2023-call-projects
17th September, 14h – 16h (CEST, Brussels time). Recycling animal by-products to fertilisers: nutrient circularity, food chain safety and consumer confidence. Jointly organised by ECOFI, Eurofema, EBIC and ESPP. With participation of the European Commission (DG SANTE, DG GROW Fertilisers). This webinar will address several key questions: Which Animal By-Product (ABP) materials can currently be used in EU fertilising products? Under what processing conditions? How do the EU ABP Regulations and the Fertilising Products Regulation (FPR) fit together? What other materials could be considered? What logic and procedures should be followed to consider additional materials?
Secondary materials and fertiliser industry operators are invited to submit examples of ABPs with significant recycling potential as fertilisers. These should be safe, higher uses in the waste hierarchy (food, animal feed) should not be feasible, and they should currently not be authorised under the EU FPR.
This first webinar will present the current regulatory context, discuss several examples of potentially valuable ABPs that are currently excluded from the FPR, and propose ways to advance the inclusion of different types of ABP materials.
Registration open (free) https://us02web.zoom.us/meeting/register/tZUrce6sqz0qGdD1o9cwY3u7GaJ4oo1gn5cA#/registration
Please send industry examples of ABP materials for consideration: short text indicating origin of material (from which industries, type of by-product), processing, agronomic value, potential (tonnes/year EU), health and environmental safety, industry contacts (emails) – to
QLab webinar presents conclusions proposed as input for pathogen safety, contaminants and agronomy for studied Cat.2 and Cat.3 ABPs for the Fertilising Products Regulation CMC10. Further input is still possible. The webinar included participation of the European Commission (DG GROW) and industry stakeholders. The study covers: processed insect frass, glycerine, by-products from production of fuels from ABPs, other Cat.3 materials, Processed Animal Protein (PAP), hydrolysed proteins, Meat and Bone Meal (MBM), Di- and Tri-Calcium Phosphate from bones, blood products, horn and hoof products, feathers and down, wet blue leather. Proposed conclusions are that in all cases, the processing required under the Animal By-Product Regulation are sufficient to ensure pathogen safety, when correctly applied (this includes BSE/TSE prion safety, given that Cat.1 materials are excluded). Pharmaceutical contaminants, including antibiotics or antibiotic resistance, could be an issue in some materials, and for these should be monitored and if possible reduced at source. In some materials, some contaminants could require specific limits on a case-by-case basis: methanol in glycerine; heavy metals in glycerine, horns & hoofs, hides & skins; arsenic in feathers & down; heavy metals and chromium in wet blue leather (chemicals used in tanning); possibly dioxins in feathers or horns where they may biologically accumulate. For processed insect frass, there are questions about protein allergens (in handling). Another question raised is possible deterioration of materials during storage, potentially resulting in mycotoxins.
The materials considered, based on available publications, show positive fertilising value, bringing organic material and/or nutrients (nitrogen, phosphorus, potassium, micronutrients) and can stimulate soil biology.
After any further input, the QLab report to the European Commission will be finalised, including proposed regulatory wording for inclusion of these materials into the FPR CMC10 (processing, contaminant and other criteria).
Webinar participants suggested that heavy metal levels are already fixed by FPR PFCs and need not be otherwise limited. ESPP commented that heavy metal limits in PFCs are adequate if these come only from heavy metals already present in the animal. However, for wet blue leather or skins/hides from tanning and leather processing, where chemicals including chromium, and arsenic are used, then specific limits in the CMC will ensure consumer and farmer confidence and environmental safety, and avoid “dilution” of such industrial pollutants into fertilisers and so onto fields.
Participants underlined that testing of e.g. allergens, pharmaceuticals, would be prohibitively expensive for organic fertiliser producers, and that these costs should be born by the livestock production and ABP processing sectors, so inciting to reduce at source.
Input and comments on the questions and conclusions proposed in these slides are invited to
Organised by CERTrust, with Theodora Nikolakopoulou of DG GROW. ‘Processed Manure’ is now authorised under CMC10 of the FPR under specific conditions (see ESPP eNews n°88) and manure can also be used as input to CMC3 (composts), CMC5 (digestates), CMC14 (pyrolysis materials) under conditions. This webinar discusses the regulatory mechanism of these authorisations, ABP ‘End Points’, interactions with national fertiliser regulations and other regulations, sterilisation and hygienisation conditions, temperature-time conditions, use conditions, post-processing, packaging and storage obligations, certification documentation, how manure-derived recovered nutrients are in some cases authorised under other CMCs (e.g. recovered ammonia salts from offgases under CMC15).
Webinar 1st July 2024 - watch replay and read transcript https://www.youtube.com/watch?v=HsUrwXJB_4w
The online consolidated version of the FPR has been updated to include “Processed Manure” in CMC10, as specified in the Delegated Regulation 2024/1682 (4 March 2024), see ESPP eNews n°88. The first batch of other materials which will hopefully be soon added to CMC10 are still under assessment (see QLab webinar above). ESPP recommends to users to always refer to the “consolidated” version of the FPR, in order to avoid working with outdated texts which do not take into account recent amendments (despite the consolidated version is only for guidance and does not include the recitals of the amending regulations). Note that CMC11 (By-Products) Regulation 2022/973 is NOT (and will not be) integrated into the consolidated FPR (for legal reasons) so should be consulted separately for CMC11. Also note that the link below to the consolidated FPR is to the CURRENT version: on opening this link, you should verify if there is not a more recent version (under “Hide all versions” on left hand side of page).
Consolidated EU Fertilising Products Regulation, consolidation of 3/7/2024 HERE.
The EU continues to engage new infringement procedures against Member States for not fully implementing EU water policies, allowing pollution and deterioration of water bodies, including by phosphorus and nitrogen.
Failures to adequately collect and treat sewage or reduce agricultural nitrogen pollution are progressively being resolved, although this has in some cases only been after the European Commission engaged legal action at the European Court of Justice (ECJ): e.g. Belgium - ECJ C-395/13, France, Hungary - ESPP eNews n°56, Spain, Italy, Poland - ESPP eNews n°25, Germany – Euractiv 1/6/2023.
Implementation of the 1991 Urban Waste Water Treatment Directive (that is before the recently decided revision) and the 1991 Nitrates Directive both still remain incomplete. Over the last year, the Commission has engaged actions against:
The Commission has also engaged actions towards a number of Member States for inadequate implementation of the EU Water Framework Directive (2000/60) and/or the Marine Strategy Framework Directive (2008/56), concerning reporting and definition of water basin management plans, river basin action programmes and flood risk maps.
Although there remain significant failure in EU water policy implementation by Member States, the situation is worse for EU waste policy: the Commission announced in July 2024 initial opening of infringement procedures against 27 Member States for failure to meet the 2020 target to prepare 50% of municipal waste for reuse and recycling (EU Waste Framework Directive 94/62 amended by 2018/852).
OECD paper indicates the need to improve coherence between EU agriculture and industry policies and the ‘Polluter Pays’ principle set by the Water Framework Directive. The ‘Polluter Pays’ principle was established by the OECD in 1972 and then as one of the 27 guiding principles of the UN ‘Rio Declaration’ 1992. The EU Water Framework Directive (WFD 2000/60) art. 9 fixes the “principle of recovery of the costs of water services, including environmental and resource costs, … in accordance in particular with the polluter pays principle”. The OECD’s 50-page analysis discusses challenges to implementation, including the distinction between water service users (paying water fees) and polluters. In particular, farmers using fertilisers or phytochemicals (diffuse pollution) will not pay environmental or depollution costs via water use fees. The OECD paper identifies pesticide taxes in place in Sweden and Denmark, a nitrate fertiliser tax in France only and a tradable phosphates quota system in The Netherlands. However, diffuse pollution is causing WFD quality status failure in nearly 40% of EU surface waters. In France, removal of nitrates and phytochemicals from drinking water costs 0.5 – 1 billion €/year (not considering environmental costs of water body quality degradation) whereas the nitrates tax revenue is <0.2 billion €/y. A study in Denmark estimated that a 150% tax on nitrates fertilisers would be needed to reduce losses by -30% (water quality target). The paper notes that cross-compliance introduced into the EU Common Agricultural Policy (that is, farmers must respect environmental legislation such as the Nitrates Directive or Water Framework Directive) to receive farm subsidies face difficulties of implementation, in particular identification of individual farmer responsibility in diffuse pollution. Also, CAP penalties are considered inadequate to ensure compliance. Measures such as obligatory balanced farm fertiliser plans and soil monitoring can contribute to ensuring application of ‘Polluter Pays’ to diffuse agricultural pollution. Nutrient credit trading programmes are noted, e.g. Great Miami River Watershed, Ohio. Identified challenges include Extended Producer Responsibility to implement ‘Polluter Pays’ for industrial chemicals (e.g. pharmaceuticals under the revised EU Urban Waste Water Treatment Directive, see ESPP eNews n°83) costs of ‘legacy’ pollution, the absence of an EU legal framework to apply ‘Polluter Pays’ to soil pollution.
“The implementation of the Polluter Pays principle in the context of the Wate Framework Directive”, D. Sanchez Trancon, X. Leflaive, an output of the OECD Environment Policy Committee (EPOC) Working Party on Biodiversity, Water and Ecosystems (WPBWE), OECD Environment Working Papers No. 238, 23 May 2024, https://dx.doi.org/10.1787/699601fc-en
2024 “Biomethane Map” from European Biogas Association shows nearly 40% increase in EU biomethane production capacity since 2022-2023 producing nearly a million tonnes of digestate. EBA’s updated map identifies over 1 500 biomethane plants across Europe, of which 80% are connected to methane compression, either for injection into the natural gas distribution network or for transport fuel. 25 billion € of private investment is already identified as secured for further plant investment, and will result in nearly 1 000 new plants by 2030. The EU objective to increase biomethane production by x10 by 2030 will be fed mainly by manure, as well as agricultural by-products and sequential crops. This will result in high-nutrient digestates. EBA estimates that by 2030 digestates in Europe will contain 4.1 Mt of nitrogen, 0.7 Mt of phosphorus and 0.4 Mt of potassium, that is around 60% of phosphorus currently used in mineral fertilisers. Today around 2/3 of digestate is used locally on fields and only around 16% is processed to fertiliser products. (See Giulia Cancian, EBA, in SCOPE Newsletter n°146 and EBA digestate report in ESPP eNews n°86).
“New edition of the Biomethane Map shows 37% increase in biomethane capacity in the EU compared to the previous map”, European Biogas Association (EBA), 5th July 2024.
The revised IED was published on 24th April 2024, setting mandatory emissions and environmental criteria across industry, increasing emphasis on material efficiency and covering around three quarters of pig and poultry farms. The Directive is implemented by BAT (Best Available Technology BREFs, established under a JRC process, and formally adopted by the European Commission. Emission limits, environmental technologies and other standards defined in these BAT BREFs then become mandatory for all installations of the relevant industry sector across Europe (above specified size). Under the new title “Industrial and Livestock Rearing Emissions Directive”, intensive pig and poultry farms (as defined in Annex Ia) will be covered from 280 – 380 LSU( livestock units). This is expected to increase the number of pig and poultry farms covered from around 35% under the current IED to 75 – 80% by 2030. Intensive cattle farms are not yet covered, but the Commission must assess this possibility by 2026. The revised Directive also increases the emphasis on materials and resource efficiency.
JRC BAT BREFs https://eippcb.jrc.ec.europa.eu/reference
Industrial and Livestock Rearing Emissions Directive (IED 2.0) 2024/1785 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AL_202401785
European Commission IED2.0 page: https://environment.ec.europa.eu/topics/industrial-emissions-and-safety/industrial-and-livestock-rearing-emissions-directive-ied-20_en
Research shows that lead – phosphorus based material can be superconductor (zero electrical resistance) at room temperature and pressure. The “LK-99” material was synthesised from copper phosphide (CuP, a derivate of elemental phosphorus P4) and lanarkite (a lead sulphate – lead oxide mineral). The superconductivity is considered to result from structural distortion as copper ions substitute lead ions in the phosphate lattice, enabling electron movement. This research paper provides another example of possible applications of P4- derived chemicals in electronics developments.
“The First Room-Temperature Ambient-Pressure Superconductor”, S. Lee et al., 2023. arXiv:2307.12008, DOI
In pot trials, iron II and III phosphates were not effective P-fertilisers for rice, but the P-availability was increased by 60-day waterlogging of the soil and addition of organic matter (glutamate). Three iron II (vivianite) and three iron III phosphates were pot-trialled with rice in three P-deficient soils (pH: 4.5 limed to 6.1, 6.0, 7.9, iron 0.9, 2.6, 2.9 gFe/kg). The vivianites were provided by Wetsus (recovered from wastewater), Fertiberia and laboratory synthesis. The iron III phosphates were phosphorus-loaded iron materials from drinking water treatment (two Aquaminerals, one from NeReDrain agricultural drainage P-trap). In the pot trials, the iron phosphates were compared to triple super phosphate (TSP) at the same P application rate plus a control (no added P). N, K and micronutrients were added in all cases. The rice pot trials (21 days) showed in all cases plant P uptake considerably lower than with TSP and generally not higher than for the control (no added P), in all three soils for all the iron phosphate materials tested, both in pot trials with waterlogged and non-waterlogged soil. In longer soil incubation tests (60 days), with waterlogged soil, the different iron phosphates did show P-release (increased soil CaCl2 extractable P) compared to the control, in two of the three soils (not in the limed acidic soil), in particular when organic matter was also added (glutamate).
“Increasing phosphorus fertilizer value of recycled iron phosphates by prolonged flooding and organic matter addition”, R. Saracanlao et al., Pedosphere 34(3), 2022, pp 631-640. DOI
Of nearly 240 tP/y entering the system, c. 80 tP/y accumulate in soils or are lost to water bodies. Recovery of P from digested sewage sludge would meet up to 96% of the annual P demand for crops, but this flow is currently landfilled.
Material flow analysis has been applied to characterise the 2020 phosphorous cycle in the seven municipalities of the Rimini province (Italy) and the State of San Marino. The area is served by the Santa Giustina wastewater treatment plant (560 000 p.e.), where sewage sludge undergoes anaerobic digestion. Two phosphorus flow analysis studies from the literature were used as archetypes for the modelling of the system (van Dijk et al., 2016 and Koppelaar and Weikard, 2013), and data were gathered from databases, inventories and statistics (from EEA, ISPRA, ARPA, USDA, …), and complemented with literature searches including ESPP Fact Sheet. The model showed that 236 ± 23 t P enter the system annually, of which 122 ± 12 t P/y from fertilisers applied to agricultural soils (producing wheat, lettuce, alfalfa, and grapes), and the remainder from imported food products, animal feed supplements for livestock, and household chemicals. The greatest P flow within the system (158 ± 31 t P/y) is from the agricultural soils to the harvested crops, even though a net accumulation in soils of 15 ± 23 t P/y was estimated by the model. The P consumed by the population is excreted into the sewage system, along with P from household chemicals, for a total of 142 ± 3 t P annually, corresponding to the recovery P potential at theoretical 100% efficiency rate. In 2021, current treatment technologies at the WWTP allowed the removal of about 117 ± 2 t P/year from wastewater (removal efficiency rate of 82%). This amount of P could theoretically meet up to 96% of the annual demand of mineral fertilisers in the system, but currently goes to landfill. The P discharge after water treatment is 25 ± 3 t P/y and adds to P leached flow from crop production (45 ± 8 t P/y). The resulting net P input to water bodies of 66 ± 8 t P/y and runs off to natural water bodies.
“Phosphorous flow analysis and resource circularity at the province level in north Italy”, C.M. Duque Torres et al., Sustain. Chem. Pharm. 33 (2023) 101133 DOI
Detailed N and P flow analysis for the livestock-intensive region of Flanders shows low nutrient use efficiency (11% N, 18% P). Recycling/reuse could be increased from 35% N and 37% P of system inputs to 45% N and 48% P.
A recent study (Vingerhoets et al., 2023) modelled 40 sectors and processes, examining over 1 800 nutrient flows within the Flanders region. This included the fate of nutrients post-consumption, using data from various sources like government agencies, farming industries, treatment facilities, and households. The study builds on Coppens et al. (2016), which analysed nutrient flows in the same region for 2009, quantifying 160 N and P flows across 21 compartments. The 2016 study found 20 kgN/cap/y and 0.53 kgP/cap/y were emitted to the environment, lower than the EU averages. Crop and livestock production were the main contributors to emissions. In crop production, animal manure supplied 55% of the N and 87% of the P demand for fertilisers, contributing significantly to environmental nutrient losses. Inorganic fertilizers accounted for 32% of N and 6% of P. Despite advancements in waste management, only a small fraction of nutrients in waste streams were recycled (17% N and 12% P).
Vingerhoets et al. (2023) estimated a total system input of 87.9 ± 2.4 kgN/cap/y and 13.9 ± 0.4 kgP/cap/y, mainly from imports of plant and animal products (50% and 53% of N and P inputs), mineral fertilizers (21% N, 4% P), and animal feeds (18% N, 20% P). Compared to 2009, N and P inputs decreased (87.9 vs. 130 kgN/cap/y and 13.9 vs. 19 kgP/cap/y). Nutrient inputs were exported in food products (19% N, 20% P), feed (8% N, 11% P), side streams (including manure, 27% N, 61% P), lost to the environment (39% N, 4% P), or accumulated in soils (7% N, 4% P). Feed flows were dominant due to intensive livestock production. About one-third of consumed nutrients were assimilated into animal products, with the remainder in animal manure, reused for crop production, processed, or exported. The model showed a low nutrient use efficiency of 11% for N and 18% for P. Currently, 55% of 59.6 kgN/cap/y and 56% of 10.0 kgP/cap/y in recoverable streams are recycled or reused, providing 35% and 37% of total N and P input, respectively. Implementing recovery technologies for untapped recoverable streams (e.g., treated municipal wastewater, dried and exported poultry manure, activated-sludge treated pig and cattle manure, and point source NH3 emissions) could increase recovery efficiency by 22.7% for N and 17.6% for P, enhance reuse efficiency by 14.6% for N and 24.4% for P, and replace 45% of external N input and 48% of external P input.
“Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region”, R. Vingerhoets et al., J. Clean. Prod. 410 (2023) 137278 DOI
“Follow the N and P road: High-resolution nutrient flow analysis of the Flanders region as precursor for sustainable resource management”, J. Coppens et al., Resour. Consev. Recycl. 115 (2016) 9-21 DOI
Over 80% of imported P is landfilled, 17% flows to the Saint Lawrence River, and less than 3% is available for recycling. There is potential to recover P from wastewater and solid organic waste and to reduce P flows to landfill by up to 95%.
The study presented a P flow analysis in the island of Montreal (Canada) in the year 2014, and explored possible flow modifications in the 2008-2050 period following potential policy changes and shifts in social behaviour. The study focussed on the food, wastewater, and waste management sectors, not calculating inputs and flows related to pet food and pet waste, household products containing P, and other flows. The geographical system boundary for the analysis was the island of Montreal, therefore flows associated with food systems operating exclusively off-island were not considered. P concentrations, quantities, and flow rates were based on peer-reviewed literature and published government reports. Site-specific data were used when possible, supplemented by provincial or national values. Results showed that approximately 3% of imported P (from food, feed and fertilisers) is being recovered in compost, with only 0.2% being recycled to urban food production. The majority of P is accumulating in landfills (c. 85%, mostly as sewage sludge), while 17% is exported to the river. At present, there is c. 1.7 ktP/y in organic waste streams, of which c. 2/3 is in sewage and c. 1/3 is in organic wastes. The amount of organic solid waste (food, leaves, and yard waste) being collected is expected to increase. The amount of compost produced from these solid wastes is predicted to eventually exceed the needs of on-island agriculture, resulting in available P for off-island markets.
“Dynamic simulation of phosphorus flows through Montreal’s food and waste systems”, Treadwell et al., Resour. Conserv. Recy.131 (2018) 122–133, DOI
P flow analysis (PFA) suggests that Spain’s current P cycle is not efficient with significant losses and soil accumulation. However, data incoherences mean that precise conclusions cannot be drawn.
A phosphorus flow analysis conducted for Spain (19 autonomous regions plus Baleares and Canarias islands) for the year 2012 suggests that a net total of 215 kP/y was imported by Spain (imports – exported products). The numbers given suggest that one third of this is accumulating in stockpiled food and animal feed products. This would mean* that around a quarter of Spain’s food and animal feed production was being stockpiled, which seems unlikely. The PFA also suggests that over half of compost production was stockpiled (13 ktP/y accumulation in compost), also unlikely, as well as accumulations in industrial chemicals and fertiliser stocks. As indicated by the authors, these apparent accumulations are probably due to “partial information” rather than reflecting reality. This suggests that the PFA estimates for losses of phosphorus to water (45 ktP/y, of which 32 ktP/y from sewage works and 13 ktP/y from agricultural land) and for accumulation in soils (42 ktP/y) are probably too low.
These incoherences mean that the authors’ conclusions concerning efficiency of crop and animal production P use, and comparisons with efficiency in other countries, are not meaningful: it seems likely that much of the apparent “accumulation” of P is in reality P being lost to water or accumulated in soils.
The PFA numbers indicate that input to agricultural land (340 ktP/y) consisted of mineral fertilisers (48%), animal manure (39%), urban sewage sludge (10%), compost and others (3%). Fertiliser use data (kgP/ha applied) indicated an overdosing trend in Spain, up to 4 times the average for EU-27, with a ratio of applied mineral fertilisers to total fertiliser application close to the EU-27 average. 60% of the P received by wastewater treatment plants is removed in sewage sludge and around 69% of the sewage sludge was recycled to agriculture.
* comparing P shown as stockpiled to P shown as input to “Food and feed” in fig. 1.
“A Phosphorous Flow Analysis in Spain”, J. Álvarez et al., Sci. Tot. Env. 612 (2018) 995-1006 DOI
A six-year (2008–2013) P flow analysis in Gippsland, Australia, found that c. 70% of annual P inflow was stored within the region, and that the per capita P inflow (60 kg P/y) was remarkably higher than other regions (1.6-20.7 kg P/y).
In Gippsland, an intensive agricultural food-producing region of Australia, most of the annual inflow, outflow, and storage of P in the region is associated with the livestock farming system. The annual inflow of P primarily comes from commercial fertilisers for pastures (66% of the 15 ktP/y total input) and livestock feed (29%), while livestock products account for 94% of the mean annual total outflow (c. 4 ktP/year). The majority of P storage (66%, c. 7 ktP/year) is in livestock farm soils, where cattle excreta accumulate. These findings are consistent with previous flow studies (summarised in SCOPE Newsletter n° 77 and 95), indicating that Australia is a significant P importer, with livestock production accounting for a large share of the country's P consumption, including fertilised pastures and animal feeds, and that P in animal manures mostly accumulates in the soils of pastures. Over the study period, over 65 ktP accumulated in the region, and c. 3 ktP were lost through soil erosion and runoff. Both the annual inflow and storage of P in the Gippsland region and the livestock farming system showed a decreasing trend over the study period, while the annual outflow remained nearly the same. This suggests improved P management, coinciding with several initiatives for sustainable nutrient management in the region’s dairy farms. Despite these improvements, c. 0.5 ktP annually entered water bodies from different subsystems, negatively impacting the aquatic environment. Additionally, nearly half of the annual total P inflow in the waste management system remains unrecovered or unutilised, ending up in landfill or the environment as disposal of garbage (from solid waste streams), wastewater, and sewage sludge.
“A multi-year phosphorus flow analysis of a key agricultural region in Australia to identify options for sustainable management”, R. B. Chowdhury et al., Agric. Sys. 161 (2018) 42-60 DOI
Agricultural phosphorus use efficiency in thirteen countries averages c. 45%. It is higher in crops & pastures (c. 70%) and lower in the livestock sector (c. 20%).
The study reviewed national scale P flow analyses to compare the major key P inflows, outflows, and P use efficiency (PUE*) in the crop-pasture, livestock and overall agricultural production sectors across various nations**. National flow studies were selected among peer reviewed single- or multiple- years flow studies published between 2005 and 2020, considering agricultural flows including crop, pasture and livestock production, and from which quantitative data were available.
Given the positive correlation between high PUE in the crop-pasture subsystem and high PUE in the overall agricultural sector, the authors conclude that applying P fertilisers for producing more plant-based food than animal feed/pasture for generating animal-based food could reduce P input and improve PUE in the overall agricultural production system. They also underline the potential for improving PUE in the agricultural system of Asian countries by reducing the use of mineral fertilisers and enhancing the use of livestock manure through recovery and recycling, following many EU-countries example.
* Definitions of P use efficiency (PUE), as reported by the authors for the sector of:
- crop production: conversion ratio of the total P input into useful plant exports (e.g., harvested crops)
- animal/livestock production: conversion ratio of the total P input into useful animal/ livestock products (e.g., milk and meat)
** Selected national P flow studies: Bangladesh, China (summarised in ESPP Scope Newsletter 128), India, Japan, South Corea, Australia (see Scope Newsletter 95), New Zealand, Austria (see Scope Newsletter 143), Finland, France (see Scope Newsletter 104) , Germany, Netherlands (see Scope Newsletter 105), Norway (see Scope Newsletter 123), Portugal, Spain (see summary above), Sweden, Switzerland (see Scope Newsletter 128), Turkey, UK (see Scope Newsletter 113) and USA. Only 13 countries were considered for PUE comparison in the overall agricultural sector.
“Phosphorus use efficiency in agricultural systems: A comprehensive assessment through the review of national scale substance flow analyses”, R. B. Chowdhury et al., Ecol. Indic. 121 (2021) 107172 DOI
State/Region/City | eNews | SCOPE Newsletter | State/Region/City | eNews | SCOPE Newsletter |
Europe | 85, 92, 117 | Global | 43, 58 | 73, 76, 99, 128 | |
Austria | 54, 113, 128, 143 | Australia | 77, 95 | ||
Baltic | 42 | Bangkok | 122 | ||
Brussels | 47 | China | 65, 78, 103, 128 | ||
Finland | 78 | Egypt (Nile) | 67 | ||
France | 93, 101, 104 | New Zealand | 116 | ||
Germany | 65 | Ontario | 68 | ||
Netherlands | 97, 105 | Uganda | 113 | ||
Nordic Countries | 123 | Review | 38 | 128 | |
Northern Ireland | 49 | ||||
Paris region | 22 | ||||
Slovenia | 50 | ||||
Stockholm | 122 | ||||
Sweden | 71, 93, 99 | ||||
Switzerland | 80, 85, 102, 108, 126, 128, 141 | ||||
UK | 73 | 98, 108, 113, 116 |
SCOPE Newsletter: www.phosphorusplatform.eu/SCOPEnewsletter eNews newsletter: www.phosphorusplatform.eu/eNewshome
If you do not already receive ESPP’s SCOPE Newsletter and eNews (same emailing list), subscribe at www.phosphorusplatform.eu/subscribe
LinkedIn:https://www.linkedin.com/company/phosphorusplatform
Slideshare presentations: https://www.slideshare.net/phosphorusplatform - Twitter: @phosphorusESPP
YouTube https://www.youtube.com/user/phosphorusplatform
With participation of the European Commission (DG SANTE, DG GROW Fertilisers). This webinar will address several key questions: Which Animal By-Product (ABP) materials can currently be used in EU fertilising products? Under what processing conditions? How do the EU ABP Regulations and the Fertilising Products Regulation (FPR) fit together? What other materials could be considered? What logic and procedures should be followed to consider additional materials?
Secondary materials and fertiliser industry operators are invited to submit examples of ABPs with significant recycling potential as fertilisers. These should be safe, higher uses in the waste hierarchy (food, animal feed) should not be feasible, and they should currently not be authorised under the EU FPR.
This first webinar will present the current regulatory context, discuss several examples of potentially valuable ABPs that are currently excluded from the FPR, and propose ways to advance the inclusion of different types of ABP materials.
Please send industry examples of ABP materials for consideration: short text indicating origin of material (from which industries, type of by-product), processing, agronomic value, potential (tonnes/year EU), health and environmental safety, industry contacts (emails) – to
Please subscribe www.phosphorusplatform.eu/Subscribe
Link to www.phosphorusplatform.eu/eNews088
Download as PDF
8-10 October 2024, Lleida, Spain. 120 abstracts received. With three European Commission services, United Nations, industry & experts from Europe and worldwide. Site visits to industrial nutrient recycling, digestate processing (Fertilizantes del Ebro, biogas installations). ESPC5 follows on from ESPC4 Vienna, 2022 which, with 320 participants onsite and 80 online, was the biggest conference on phosphorus ever worldwide. Join us for this unique networking, industry, policy and science event.
Updated programme, registration, site visit details: https://www.phosphorusplatform.eu/espc5
17th September, 14h – 16h (CEST, Brussels time). Recycling animal by-products to fertilisers: nutrient circularity, food chain safety and consumer confidence. Jointly organised by ECOFI, Eurofema, ESPP and EBIC. With participation of the European Commission (DG SANTE, DG GROW Fertilisers). This webinar will address several key questions: Which Animal By-Product (ABP) materials can currently be used in EU fertilising products? Under what processing conditions? How do the EU ABP Regulations and the Fertilising Products Regulation (FPR) fit together? What other materials could be considered? What logic and procedures should be followed to consider additional materials?
Secondary materials and fertiliser industry operators are invited to submit examples of ABPs with significant recycling potential as fertilisers. These should be safe, higher uses in the waste hierarchy (food, animal feed) should not be feasible, and they should currently not be authorised under the EU FPR.
This first webinar will present the current regulatory context, discuss several examples of potentially valuable ABPs that are currently excluded from the FPR, and propose ways to advance the inclusion of different types of ABP materials.
Registration open (free) https://us02web.zoom.us/meeting/register/tZUrce6sqz0qGdD1o9cwY3u7GaJ4oo1gn5cA#/registration
Please send industry examples of ABP materials for consideration: short text indicating origin of material (from which industries, type of by-product), processing, agronomic value, potential (tonnes/year EU), health and environmental safety, industry contacts (emails) – to
The European Food Safety Agency (EFSA) is calling for input by Friday 5th July on use of Cat.1 Animal By-Product ash in fertilisers, considering prion risk (TSE/BSE) and other possible biological or chemical risks (see ESPP eNews n°87, EU EFSA Mandate M-2023-00166, EFSA-Q-2024-00278). Draft SAFOSO risk appraisal report here – for comment to 4th July. If you are aware of data, publications or evidence relevant to the health or environmental safety or to agronomic value of ABP Cat. 1 ash, please submit to EFSA (with copy for information copy to ESPP) or send to ESPP and we will submit for you.
ESPP has submitted a number of reports and studies which we have collected to date, and also a specific and new analysis of prion (BSE/TSE) risk estimation for use of Cat.1 ash for fertiliser, prepared for ESPP by SAFOSO. A “final draft” of this analysis has been submitted to EFSA and can be consulted here. Your comments and additions to this document are invited to ESPP. We will submit to EFSA, in August, a finalised version taking into account additional information which you send us.
Input to EFSA MUST be made via the specific web portal Portalino, by Friday 5th July, and must refer to question number EFSA-Q-2024-00278. To do this, you must first contact EFSA by email and request opening of a Portalino account. Alternatively, send your input to ESPP and we will submit.
Draft SAFOSO risk study of Cat.1 ash, for ESPP – for comment and input by end July please here.
Manure can now be used as an input for CE-mark fertilising products, under specific conditions, as such after ABP Regulation sterilisation under CMC10, or also as input to composts, digestates, biochars (CMCs 3, 5, 14). European Commission Delegated Regulation 2024/1682 (4th March 2024), completing DG SANTE Delegated Regulation 2023/1605 (see ESPP eNews n°86), enables, as of now and under specified conditions, the use of “Processed Manure” as a component material under the EU Fertilising Products Regulation (FPR) CMC10. This concerns ‘Processed Manure’ as defined in the EU Animal By-Products Regulation ABP 1069/2009 and Annex XI, §2, ch. I of 142/2011.
Manure can already today also be used as an input to EU FPR composts and digestates (CMC3, CMC5) if the composting / anaerobic digestion process achieves the ABP sterilisation requirements (ABP Annex XI, §2, ch. I of 142/2011) or as an input to EU FPR pyrolysis and gasification materials (CMC14) if the pyrolysis/gasification process achieves the ABP “Processed Manure” sterilisation requirements (as above).
The new Delegated Regulation 2024/1682 sets specific conditions for use of “Processed Manure” in EU FPR CMC10 including:
Note that this new Delegated Regulation 2024/1682 covers only ‘Processed Manure’ in FPR CMC10. The conditions for inclusion into CMC10 of other Cat.2 and Cat.3 materials (as listed in Delegated Regulation 2023/1605) are still under study. Cat.2 and Cat. 3 materials can already be used as inputs to FPR composts and digestates (CMCs 3, 5) if the composting/anaerobic digestion process achieves the ABP sterilisation requirements (ABP Annex XI, §2, ch. I of 142/2011.
European Commission Delegated Regulation (EU) 2024/1682 “amending Regulation (EU) 2019/1009 of the European Parliament and of the Council as regards adding processed manure as a component material in EU fertilising products”, 4th March 2024 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L_202401682https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L_202401682
The International Fertiliser Society prize (UK£ 1000 plus 2 x UK£ 500) rewards completed or advanced research (PhD / MSc level) susceptible to make a practical contribution to improving crop nutrition. Application form (one page) and information on previous prize winners is here
Submission deadline: 30th September. IFS Brian Chambers International Award for Early Career Researchers in Crop Nutrition. HERE.
Timac Agro and University of Bari, Italy, have opened for candidatures five PhD positions:
The PhDs will be with University of Bari (Università degli Studi di Bari Aldo Moro), Department of Earth and Geoenvironmental Sciences. They are three year PhDs, with 6-12 months at another international research institute. They are funded by Italian National Recovery and Resilience Plan (NRRP) – Next Generation EU (NGEU) and TIMAC AGRO Italia S.p.A.
Applications should be submitted within 1-2 months. Deadlines and further information:https://www.dindistegeo.it/ or Daniela Pinto and Daniel El Chami .
The Global Phosphorus Institute (GPI), Benguérir, Morocco, is recruiting a Research and Operation Analyst. Application deadline 15th August. Role is to review information (regulatory, company, scientific) to support decision making and to plan and organise activities.
Information: https://www.tgpi.org/en/home -> “Opportunities”
Information on GPI, see ESPP eNews n°56.
Newly published ISO 59004, vocabulary and principles for the circular economy, includes definitions related to nutrient cycles and cites nutrient recycling as an example of circular economy actions. This new ISO standard, defining vocabulary and principles, joins four others in the ISO 59000 family, which aim to harmonise understanding of the circular economy and support its implementation and measurement, with ISO 59010 (circular economy business models), ISO 59020 (measuring and assessing circular economy performance), ISO 59040 (product circularity data sheet) and ISO 59014 (principles of recovery of secondary materials).
ISO 59004 provides terms and definitions, sets a vision and principles for a circular economy, and offers practical guidance for actions to implement in any organisation. Key points include:
European Biochar Industry (EBI) Consortium document presents evidence that pyrolysis can largely eliminate organic contaminants, discusses phosphorus plant availability, and calls for inclusion of sewage sludge biochar into the FPR (EU Fertilising Products Regulation). The document has been input to the currently ongoing NMI study (for the European Commission) into additions and extensions to the FPR Component Material Categories (Annex II CMCs). It updates a previous position paper of January 2023 (ESPP eNews n°73). It aims to present new scientific evidence published since the JRC STRUBIAS report 2019. This report concluded that sewage sludge should be excluded from authorised inputs to FPR biochars (CMC14) but noted that this “could possibly be revised once robust and extensive techno-scientific evidence underpins the safe use of (specific) pyrolysis & gasification materials derived from sewage sludge”.
Arguments and evidence are provided on contaminant elimination in pyrolysis processes. It is explained why the technology is adapted for implementation in municipal sewage works (deployable and scalable). Agronomic, environmental and carbon benefits of biochar are presented, including contribution to carbon sinks and greenhouse gas emissions reduction. It is noted that sewage sludge biochar is authorised under national regulations in the Czech Republic, Denmark, Finland and Sweden.
PFAS elimination
The 20-page paper brings together arguments and references showing that pyrolysis at 600°C or higher can eliminate nearly 100%% of PFAS (several studies) with data from one installation suggesting that PFAS are not transferred to flue gas. This is confirmed (at pyrolysis temperatures from 400°C) in the 2024 study by Husek et al. (ESPP eNews n°85), not cited in the EBIC document.
Concerning PFAS, ESPP notes that the cited study by Sørmo et al. 2023 (ref. 13 in the document) analysed PFAS in 8 different input materials (of which 4 sewage sludges, wood chips, garden waste …), in resulting biochar and in flue gas, for a Biogreen 2-10 kg/hour pyrolysis unit (ETIA Technologies, now part of VOW ASA), operated at temperatures 500 – 800°C. PFAS in the biochars ranged from non-detectable to 3.4 ppb, with removal of 99.6% or higher in all cases. Sørmo et al. found PFAS in flue gas, after combustion of the condensed pyrolysis oil, at all pyrolysis temperatures tested and for all of the feedstocks. Mean flue gas PFAS concentration was c. 70 ng/m2. This also confirms similar results in flue gas in the Thoma study. Thoma et al. 2022 report analysis of PFAS in biochar produced from bio-dried sewage sludge and in offgas from a commercial Pyreg pyrolysis system (c. 3 500 t dried sewage sludge/year). The pyrolysis operated with reactor inner wall temperatures 650°C front end and 590°C rear end (residence time c. 19 minutes). PFAS in offgas was analysed after post-combustion at 1020°C. 21 of 41 PFAS compounds were detected in the input sewage sludge, but none in the biochar (the authors note that non-analysed PFAS compound could be present). Only two of the analysed PFAS compounds were found in the post-combustion offgas (analysis in scrubber water). Kundu et al. 2021 report results from lab scale pyrolysis (250 g/h, semi-continuous, 5 h residence time) at 600 – 700 °C of anaerobically digested, solar dried sewage sludge. The authors report suggest 50% - 96% destruction of 6 of the 12 analysed PFAS compounds and net formation or low destruction of the others. For several of the PFAS compounds, most of the final PFAS output was estimated to be in the post-combustion offgas (analysed in scrubber water).
Evidence of elimination of pharmaceuticals, microplastics and other organic pollutants is provided. Heavy metals are largely not removed in pyrolysis but the paper argues that their concentration ratio to phosphorus is the same as in sewage sludge and that they are less mobile.
Phosphorus plant availability and processing conditions
The EBI paper concludes that phosphorus in sewage sludge biochar is plant available. ESPP suggests that further evidence is would be useful on this: only one relevant published study is cited, ref. 47, Fristak et al. 2018, laboratory pyrolysis at 430°C for two hours, compared to 2 seconds currently required in the EU FPR CMC14). ESPP notes that a second study cited (ref. 21, Chen et al. 2022), suggests that at 600°C or higher pyrolysis will result in mainly mineral forms of phosphorus, in particular apatite (the principal mineral of phosphate rock, which is poorly plant available) and it can be guessed probably also iron/aluminium phosphates in sewage sludge biochar (also mostly poorly plant available).
For ESPP, further evidence should be developed to show that sewage sludge pyrolysis carried out at a high enough temperature to ensure elimination of PFAS and other organic contaminants, resulting in a material with immobilised heavy metals and immobile carbon (justifying carbon credits), can achieve the phosphorus availability criteria of the EU FPR (80% NAC solubility), so justifying the claim to be phosphorus “reuse & recycling” (new Urban Waste Water Treatment Directive vocabulary).
The EBI paper proposes that specific conditions be included into the FPR CMC14 for input of sewage sludge: minimum operating temperature 550°C - 600°C for a non-specified minimum time (“duration that ensures full carbonisation”). ESPP regrets that more precise temperature and time proposals are not put forward by industry, taking into account factors such as particle size and other process parameters, or other specific analysis criteria to demonstrate full carbonisation. A wording needs to be developed which could be proposed for inclusion into the FPR CMC14 and which would be implementable by CE-mark certification organisations (Notified Bodies).
Position paper “Sewage sludge as feedstock for pyrolysis and gasification materials (CMC14) EU Fertilising Products (EU) Regulation 2019/1009”, European Biochar Industry Consortium, April 2024 HERE.
200 participants discussed nutrient recovery technologies, definitions of bio-based fertilisers, paths to market, underlining the need for a multi-actor approach covering all the value chain to find successful business cases.
The Catalan Government explained the potential for nutrient recovery in the Catalan region, in particular from animal manure, because Catalonia is a reference region in livestock production. The Catalan biogas plan includes a plan for digestate valorisation to produce bio-based fertilisers. Laura Van Schol, NMI explained the European regulatory framework for fertilisers. The Spanish National Entity of Accreditation (ENAC) talked about the procedures to be followed for certifying fertilising products in Spain. The Spanish Ministry of Agriculture, Fisheries and Food and the Spanish Ministry of Ecological Transition and Demographic Challenge emphasised alignment of Spanish regulations with Europe.
Challenges for nutrient recovery were discussed and successful case studies presented, including digestate valorisation, compost production, insect-based organic amendments, bio-stimulants from slaughterhouse subproducts. Discussions noted the biorefinery process approach to reach zero-waste and the need to balance reducing operational costs with final quality of recovered products, noting that the market price of bio-based fertilisers is limited by the price of nutrients in mineral fertilisers.
Regulatory barriers were the main concern during the whole conference, especially the End-of-Waste status of input materials, and in particular sewage and agro-industrial sludges. The EU FPR excludes sewage sludge from use as an input material, except for precipitated phosphates and after incineration (sewage sludge ash derivates) and the new Spanish waste regulations align with this, so excluding from End-of-Waste status all sewage or agro-industry sludge derived materials. This impacts a number of fertilising product manufacturers in Catalonia who are today using sewage sludge or other sludges as input materials, in combination with other materials, to produce organic and organo-mineral fertilisers or commercial composts.
Examples of company success stories present at PRO-FEM
Fertiebro (Fertilizantes del Ebro) produces liquid fertilisers, deficiency correctors and solid fertiliser blends. The company operates one of the largest blending facilities in Spain, using raw materials of circular origin. Its R&D laboratory specialises in optimising industrial processes to manufacture from different raw materials, including secondary nutrient sources, and in analysis to offer tailor-made and a high-quality final products for customers. At PRO-FEM, Fertiebro discussed their experience and the importance of using secondary nutrient sources in their production. Almenar Bioenergy (Bioenergia de Almenar) operates anaerobic digestion to convert organic matter (manure, waste from agrifood industry, agro-industrial sludges …) into green energy, with biogas that is valorised for different energy applications. The company produces from the digestate a solid fertiliser, clean water and a liquid concentrate with high nutrient content. At PRO-FEM, Bioenergia de Almenar shared their positive business model and the future challenges that they are facing concerning regulatory barriers affecting their activities. At ESPC5, Ledia, 8-10 October 2024, site visits will enable you to meet Fertiebro and Almenar Bioenergy installations and visit their installations processing secondary nutrient streams into fertiliser products. |
Next PRO-FEM conference edition will address soil health and will take place in Lleida (Spain) in 2025.
PRO-FEM Bio-based Fertilisers and nutrient recovery, 16-17 May 2024, Vic, Spain, Office of fertilisation and valorisation of livestock manure of the Catalan Department of Agriculture (Catalan Government), with the BETA Technological Center and the and the Horizon Europe projects Fertimanure and Novafert: website.
High microplastic levels in soil, such as from plastic mulch films, can reduce phosphorus availability, likely due to adsorption onto the microplastic surfaces and possibly by increasing phosphorus mineralisation. However, this effect can be mitigated by phosphate fertiliser. Studies indicate that microplastics have more variable impacts on soil nitrogen availability.
Impacts are complex because they result not only from physico-chemical actions, but also from modifications to soil microbial communities and so to microbial activity (e.g. phosphatase enzymes). See for example, H. Ya et al. 2022 DOI who showed the formation of specific microbial communities on microplastics surfaces.
A recent paper suggesting that microplastics can release phosphorus into the soil from phosphorus flame retardants seems to be pure speculation*. J. Zhou et al. 2024 DOI, based on meta-analysis of 73 publications, suggest that microplastics in soil are correlated to increased soil phosphorus, soil available P and P leaching. They suggest that phosphorus flame retardants in microplastics might leach into the soil. To illustrate, consider a comparison: if churches and pubs appear together on a map, it might seem that most drinkers are churchgoers. However, both are simply located in village centres, not in open fields or lakes. The authors don't evaluate whether their suggestion is realistic. For soil phosphorus to increase by 5 ppm, assuming microplastics contain 5% phosphorus and release it over ten years, a 0.1% concentration of such microplastics in soil would be needed. This is a high level, considering most microplastics come from textiles, tyres, and non-flame-retardant plastics like mulch films. Therefore, it's unlikely that phosphorus in soil comes from flame-retardant plastics unless near a site processing waste electronics without dust filters. It's more probable that Zhou et al.'s correlation between microplastics and soil phosphorus is due to both being linked to agricultural activities, especially plastic mulch films. The two studies cited by Zhou et al. to support possible phosphorus input to soil from flame retardants seem irrelevant. They focus on the effects of non-flame-retardant microplastics on soil microbe phosphatase enzymes (ref. 70, S-S. Liu et al. DOI) or phthalates, not flame retardants (ref. 29, J. Wang et al. 2016 DOI). This aligns with the conclusions of F. Corradini et al. (2021) DOI in Chile, who found no evidence of microplastic pollution in natural grasslands and rangelands, but did find it in croplands and cultivated pastures. They noted that microplastic levels were not related to proximity to roads, mining, or urban areas. They concluded that microplastics are not ubiquitous in the environment and that their presence in soil is mainly related to agricultural activities, although the exact source was not identified.
R. Wang et al. (2024) DOI tested the effects of adding microplastics to soil on phosphorus availability in the lab. They used pure polymer microplastics (polyethylene PE, PVC, bio-based biodegradable PLA) without additives, at 5% dry weight and sizes ranging from 25 to 1080 µm. This high level of microplastics could occur exceptionally in fields with repeated use of mulch films. After applying phosphate fertiliser, they found that PE and PVC microplastics reduced Olsen-P by 10-40%, while PLA reduced it by 40-75%, compared to the control (no microplastics). Smaller microplastics caused greater decreases in Olsen-P. Adding fulvic acid reduced the microplastics' effect on Olsen-P. The authors concluded that microplastics reduce phosphorus availability by adsorbing it onto the polymers.
L. Wan et al. 2023 DOI meta-analysed 114 experimental studies, comparing microplastics addition to soil to control (not microplastics added), concluding that microplastic addition reduces total soil P, soil available P and total soil N.
F. Yu et al. 2023 DOI, using 0.5 – 1 µm polyethylene microplastics at 0.5 – 1% also showed that the microplastics led to considerable decreases in soil total and available phosphorus (reductions of up to -50%).
Q.L. Zhang et al. 2024 DOI tested, in pot experiments, the effects of adding 1% LDPE (low density polyethylene) microplastics to soil, showing that adding phosphate fertiliser mitigated impacts of the microplastics on bacterial communities (including impacts on microbes with phosphatase genes) on soil nitrate and on rice growth.
X. Li et al. (2022) DOI tested the addition of 1% polyethylene and polypropylene microplastics to soil in incubation tests, using pure polymers ground to 1-5 mm diameter. They tested these in the presence of organic or mineral fertilisers. The results showed that the microplastics consistently decreased soil available phosphorus, but had varied effects on soil nitrate and ammonia. The authors suggest that the varying results on soil nitrogen might be because these effects are more related to impacts on microbial communities (and thus nitrogen mineralisation) rather than physico-chemical impacts.
X. Wang et al. 2022 DOI provide a detailed review of effects of microplastics on elements cycling in the environment, with a concise chapter summarising knowledge on impacts on the phosphorus cycle. They note that “many studies” show that microplastics addition decreases soil total and available phosphorus, suggesting that this may be because microplastics lead to increased phosphatase activity, leading to P losses, or in fields because high use of plastic mulch films leads to reduced soil organic matter, again leading to P losses.
Z. Zhuang et al. 2023 DOI incubation tested addition of microplastics (polyethylene, polypropylene, butylene adipate terephthalate, ploy lactic acid = PLA) at 0.1 – 1% to paddy field soil. The microplastics (except for in some cases the biodegradable PLA) reduced soil P availability, inhibited soil alkaline phosphatase and reduced genes involved in organic P mineralisation and inorganic P solubilisation.
M. Yi et al. 2020 DOI also showed in soil incubation tests that microplastics of different forms (film, fibre, microsphere) of polyethylene and polypropylene impacted phosphatase and urease (P and N cycling enzymes) and soil bacteria communities.
M. Yin et al. 2023 DOI showed that PVC, polypropylene and poly lactic acid (PLA) microplastics significantly impacted microbial communities and N and P cycling in incubation tests with river sediments, suggesting that they could increase release of ammonia nitrogen and soluble phosphorus from sediments.
Full references of papers cited: click on the DOI link.
* Disclosure: the author of the above for ESPP also works for the Phosphorus, Inorganic & Nitrogen Flame Retardants association (pinfa).
Studies suggest that microplastics in sewage sludge used in agriculture will not negatively impact soil ecosystems. J.Liengaard Johansen et al. (2024) reviewed available data on microplastics in sewage sludge and composted organic household waste. They concluded that, when applied within legal limits, these materials result in soil microplastic levels below those considered harmful to ecosystems. This is supported by the CRUCIAL field trials in Denmark, which show no negative effects and even increased abundance of earthworms and other soil organisms after 100 years of sewage sludge application (see SCOPE Newsletters 149 and 123).
Microplastic levels have been reported at 105–108 particles per kg of dry matter, with differences likely due to varying measurement methods and particle size limits. Microplastics smaller than 500 µm could make up around 0.7% of the dry matter in sewage sludge. These microplastics mainly come from abrasion of textile fibres during laundry, washing sponges, car tyres, and paints. Microplastics in household organic waste are generally larger (rarely below 1 mm) and might be lower in content than in sewage sludge. However, when both are applied according to crop phosphorus requirements, household waste could result in a higher soil plastic content by weight.
Based on 30 studies, the maximum levels of microplastics in agricultural soils are around 0.02% of dry matter. There is little evidence to suggest that microplastics impact soil organisms or plants at these concentrations. Studies showing impacts on microbial communities and nutrient cycling are usually at much higher concentrations (often around 1%).
The authors conclude that applying sewage sludge at agronomically appropriate or legal limits poses “limited risks” to agricultural ecosystems. However, they note a significant lack of data, particularly on comparable microplastic levels in sewage sludges, composts, and soils, the long-term fate of microplastics in soils, and ecosystem impacts considering various factors like microplastic type, soil type, climate, and other pollutants.
Reference: “Extent and effects of microplastic pollution in soil with focus on recycling of sewage sludge and composted household waste and experiences from the long-term field experiment CRUCIAL,” J. Liengaard Johansen et al., Trends in Analytical Chemistry 171 (2024) 117474 DOI.
SCOPE Newsletter: www.phosphorusplatform.eu/SCOPEnewsletter eNews newsletter: www.phosphorusplatform.eu/eNewshome
If you do not already receive ESPP’s SCOPE Newsletter and eNews (same emailing list), subscribe at www.phosphorusplatform.eu/subscribe
LinkedIn:https://www.linkedin.com/company/phosphorusplatform
Slideshare presentations: https://www.slideshare.net/phosphorusplatform - Twitter: @phosphorusESPP
YouTube https://www.youtube.com/user/phosphorusplatform
The European Food Safety Agency (EFSA) is calling for input) by Friday 5th July on use of Cat.1 Animal By-Product ash in fertilisers, considering prion risk (TSE/BSE) and other possible biological or chemical risk (see ESPP eNews n°87, EU EFSA Mandate M-2023-00166, EFSA-Q-2024-00278). If you are aware of data, publications or evidence relevant to the health or environmental safety or to agronomic value of ABP Cat. 1 ash, please submit to EFSA (with copy for information copy to ESPP) or send to ESPP and we will submit for you.
ESPP has submitted a number of reports and studies which we have collected to date, and also a specific and new analysis of prion (BSE/TSE) risk estimation for use of Cat.1 ash for fertiliser, prepared for ESPP by SAFOSO. A “final draft” of this analysis has been submitted to EFSA and can be consulted here. Your comments and additions to this document are invited to ESPP. We will submit to EFSA, in August, a finalised version taking into account additional information which you send us.
Input to EFSA MUST be made via the specific web portal Portalino, by Friday 5th July, and must refer to question number EFSA-Q-2024-00278. To do this, you must first contact EFSA by email and request opening of a Portalino account. Alternatively, send your input to ESPP and we will submit.
Draft SAFOSO risk study of Cat.1 ash, for ESPP – for comment and input by end July please here.
Possible fertiliser products or input materials (CMCs), as below, are requested by the EU standardisation organisation CEN to calibrate CE-standard testing methods. The samples are needed for “ring testing” by laboratories working with CEN TC 260 - WG 8 (EU standards mandate M564 for the EU Fertilising Products Regulation). Obtaining a range of samples of these materials is important to enable development of reliable and reproducible testing methods, and inter-laboratory validation, to facilitate EU fertilising product CE-mark certification. Materials provided do NOT need to be CE-mark certified, but should correspond approximately to the EU FPR specifications of the CMC or PFC specified below.
If you can provide sample(s) of one or more of these materials, please contact Olivier Teitgen and Laure Metzger with copy to ESPP .
Please subscribe www.phosphorusplatform.eu/Subscribe
Link to www.phosphorusplatform.eu/eNews087
Download as PDF
ESPC5, the 5th European Sustainable Phosphorus Conference, 8-9 October, Lleida, Spain (site visits 10th October to Fertilizantes del Ebro, biogas plant with digestate valorisation. ESPC5 follows on from ESPC4 Vienna, 2022 which, with 320 participants onsite and 80 online, was the biggest conference on phosphorus ever worldwide.
Abstracts are invited on:
Abstracts for oral and posters: free format, must include: short title, names and emails of all authors, summary of maximum 500 words. ESPP members can take a short pitch, presenting company technologies or R&D perspectives. Send to by 16th June 2024. https://www.phosphorusplatform.eu/espc5.
ESPP (represented by Pär Larshans, EasyMining/RagnSells) will participate in a panel on Closing Material Loops. https://sustainablefoodssummit.com/europe/
We have published on our website (www.phosphorusplatform.eu/regulatory) a list of consultants active in areas relevant to nutrient recycling and fertilisers, including technical, regulatory and market questions. The table provide contacts, indications of areas of competence and geographical coverage. This list is developed for information of companies and organisations looking for professional support, and is not in any way a recommendation or endorsement of the cited consultancies. This list is open: if other consultants send relevant information (see existing table) we will be happy to include.
“ESPP list of consultants active in areas relevant to phosphorus recovery and recycling, including technical, regulatory and market questions” www.phosphorusplatform.eu/regulatory
ESPP’s 151st SCOPE Newsletter is published. This Newsletter includes draft policy proposals (one page each), based on discussions at ESPP’s two one-day workshops in March 2024, on
For each of these, ESPP will submit proposals to the European Commission based on the relevant “ESPP outline for proposals” sections in this Newsletter.
Comments and input on these outline proposals are welcome to ESPP.
This Newsletter also summarises the 16th edition of the CRU "Phosphates" Conference, the annual industry meeting place which is also the world's biggest conference on phosphorus, at which ESPP organised a panel on sustainable fertilisers.
www.phosphorusplatform.eu/Scope151
Austria is now the third European country, after Switzerland and Germany, to make P-recycling from sewage sludge legally obligatory (from sewage works ≥ 20 000 p.e., by 2033). Published as part of the Waste Incineration Ordinance (Abfallverbrennungsverordnung 2024 – AVV 2024), the new regulation requires that, from 1st January 2033, all sewage works with design capacity works ≥ 20 000 p.e., must either incinerate their sewage sludge and recover phosphorus from the ash, or must otherwise recover 60% of the sewage works inflow phosphorus. Where phosphorus is recycled from sewage sludge after incineration either 80% of the P must be recovered from the ash, or the totality of the ash must be used to produce a fertiliser compliant with Austrian fertilisers regulations. Sewage sludge and/or sludge incinerator plant operators will have to report annually the P-content of ashes or P inflow to the sewage works, type of P-recovery, tonnage of P recovered annually, tonnage of sewage sludge (DM) annually.
Austria Abfallverbrennungsverordnung 2024 – AVV 2024, CELEX 32010L0075, published in the Austrian Official Journal, 13th May 2024 (see section 4) https://www.bmk.gv.at/themen/klima_umwelt/abfall/recht/vo/abfallverbrennung.html
Proposed EU Green Claims Directive is in the Parliament – Council decision process. It will require that all environmental claims be factually substantiated and verified, with potential penalties for unsubstantiated claims. The European Parliament position and amendments were voted on 12th March and the draft Directive is now under discussion in Councill and the Directive will only be adopted under the new Parliament and Commission after the June European elections. The proposal concerns all “environmental claims” which were defined in Directive 2024/825 (February 2024), modifying 2005/29/EC, and covers “any message or representation which is not mandatory … in any form, including text, pictorial, graphic or symbolic representation, … which states or implies that a product, product category, brand or trader has a positive or zero impact on the environment or is less damaging to the environment … or has improved its impact over time”. The proposed Green Claims directive would require any such claim to be factually substantiated, subject to verification by Member States. Substantiation would have to be based on recognised scientific evidence, with a life-cycle perspective covering all significant environmental impacts, environmental performance would have to be shown to be better than legal requirements. The Directive does not define one single evaluation method and does not apply to labelling under EU regulations (EU Ecolabel, Organic Farming Regulation, EMAS, future EU carbon certification). Very small companies may be exempted.
European Parliamentary Research Service briefing document “'Green claims' directive. Protecting consumers from greenwashing” HERE
European Consultation proposal for a Directive “on substantiation and communication of explicit environmental claims (Green Claims Directive)”, 23rd March 2023, COM(2023) 166 final.
The European Commission (DG SANTE) has requested from EFSA (European Food Safety Agency) an opinion on use of Cat. 1 ash in fertilisers, considering both prion risk (TSE/BSE) and other possible biological or chemical risks. The mandate concerns ash from “incineration, co-incineration and combustion” of Category 1 Animal By-Products (without specifying incineration conditions. It reminds that Cat. 1 material must currently be “disposed by waste as incineration”, suggesting that use of Cat. 1 ash as fertiliser has been banned by EU regulations since 2009 (a lawyer’s opinion commissioned by ESPP in 2022 concluded that this is not the case, see www.phosphorusplatform.eu/regulatory, as demonstrated by authorisation of use of Cat. 1 ash as fertiliser by the UK for decades). The letter of mandate states that “the Commission is currently not aware of any new scientific data, evidence, publication, assessment or technological solution” that would justify revision of existing legislation but that following several requests “in particular from the European Sustainable Phosphorus Platform … the Commission seeks for a review of the existing scientific literature in order to explore the possible presence of biological and chemical hazards in ash from Category 1 materials after incineration, co-incineration and combustion.” EFSA have accepted this mandate committing to deadlines to deliver opinions on the BSE/TSE risk by 30th April 2025 and (if this first opinion is not negative) on other biological and chemical risks by April 2026. ESPP welcomes this DG SANTE mandate. We have already requested a risk analysis from SAFOSO to input to EFSA and will submit all other relevant information known to us.
If you are aware of data, publications or evidence of health or environmental safety of Cat. 1 ash, please indicate to ESPP so that we can forward to EFSA.
European Commission DG SANTE “Request for a scientific opinion on the presence of biological and chemical hazards in ash from Category 1 material after incineration, co-incineration, and combustion”, Ares(2024)2805627 - 17/04/2024, EFSA reference EFSA-Q-2024-00278, Mandate number M-2023-00166 https://open.efsa.europa.eu/question/EFSA-Q-2024-00278
The EU CRM act has now been published. “Phosphate rock” and “Phosphorus” (meaning P4 ) are in the Critical Raw Materials List so are concerned by the policy measures below. They are not however in the “strategic raw materials” sub-list, so are not eligible for Strategic Projects, Joint Purchasing, recycling and supply targets.
ESPP considers that this Act should support phosphorus stewardship and recycling by requiring monitoring, inciting national circularity measures and facilitating permitting of recycling projects.
ESPP regrets that P4 is not included in the “Strategic” sub-list despite being essential for the specified “strategic” industry sectors (renewable energy, e.g. solar panels; batteries; data and electronics fire safety) and despite the EU’s 100% dependency on supply from three countries (China, Vietnam, Kazakhstan) – see joint industry declaration.
ESPP notes Art. 4.1) which specifies that CRMs covers “raw materials, including in unprocessed form, at any stage of processing and when occurring as a by-product of other extraction, processing or recycling processes, … shall be considered critical raw materials”. The interpretation of this for “Phosphate rock” could be interesting (!).
The following articles of the Act concern all CRMs (not only Strategic Raw Materials), so concern “Phosphate Rock” and “Phosphorus” (P4) :
The EU’s Expert Group on Organic Farming has published a positive Opinion recommending the authorisation of calcium phosphate from sewage sludge ash in EU Organic Farming, subject to respecting EU Fertilising Products criteria. This positive Opinion comes just 18 months after submission of this dossier. It is now up to the European Commission to prepare an amending regulation to include such recovered calcium phosphate into the list of authorised fertilisers in Annex II of the EU Organic Farming Regulatiion. The Opinion refers to the EGTOP positive Opinion on “calcined phosphates” from municipal sewage, 2016, stating that these are a “similar material” (this is questionable), but that this Opinion was subject to their inclusion into the EU fertilisers regulation (which is now done). “Struvite and other precipitated phosphates”, as defined in the EU Fertilising Products Regulation (FPR) CMC12, were authorised in EU Organic Farming in January 2023 (see ESPP eNews n°73), but this does not cover phosphates from ashes (CMC13). This new Opinion is based on the EasyMining Ash2Phos process and mentions other processes, focussing only on calcium phosphate from sewage sludge incineration ash, noting its low water solubility as important. The Opinion indicates that recovery from other ashes (meat and bone meal, manure, plant residues, agricultural digestates) is considered not appropriate, because it is preferrable for Organic Farming to use these directly as fertilisers. The recommendation is to authorise, for Organic Farming: “Calcium phosphate recovered from ash – Only from sewage sludge ash origin – The relevant limits for contamination and organic pollutants set [in the EU FPR] apply”. This is different from the requirements for struvite and precipitated phosphates (as inscribed in the Organic Farming Regulation) which require to “meet the requirements laid down” in the EU FPR (interpreted by the European Commission to mean: must be CE-Mark Certified under the FPR). It remains to be seen which wording the Commission will use if and when they amend the Organic Farming Regulation.
ESPP regrets that this Opinion leaves “calcined phosphates” with a positive EGTOP Opinion from 2016 but not yet implemented into the Organic Farming Regulation. ESPP welcomes this new EGTOP positive Opinion but we regret that this is limited to “calcium phosphates”. If EGTOP considers each recycled material one-by-one, they will consume much energy and progress very slowly. ESPP suggests that EGTOP consider all ash-based phosphate and potassium fertilisers recovered from ash which meet the requirements of the EU Fertilising Products Regulation (PFC1 = Fertilisers and CMC13 = Thermal Oxidation Materials and Derivates), subject to defining a limitation on solubility, as discussed in this Opinion. ESPP also regrets the limitation to sewage sludge ash. Some animal by-products cannot be spread directly on fields and must be incinerated, so that recycling of nutrients from ash is the best option, and incinerators may intake several different materials in order to optimise nutrient recycling and minimise environmental footprint.
EGTOP (EU Expert Group for Technical Advice on Organic Production), Final report on Plant Protection (X) and Fertilisers (VII), adopted 6 - 8 March 2024 here.
Nearly 200 people joined the third European Commission (DG GROW) workshop on developing the bio-based economy, 21st May. The Commission summarised actions underway and planned to support policy development.
This follows the European Commission Communication on “Boosting biotechnology and biomanufacturing” (COM(2024)137, 20th March 2024). This Communication outlines policy actions, including research and innovation support, stimulating market demand by improving carbon impact comparisons of fossil-based and bio-based materials and by including “bio-based content requirement” in public procurement for certain categories (it is not indicated which product categories are envisaged), streamlining regulation (accelerating market approval for “bio-based fertilisers” is cited), supporting investments especially in scale-up of innovation, developing standards for bio-based industries, strengthening skills, improving cooperation and use of AI. Examples cited in the Communication include fertilisers from marine biotech and from algae grown in wastewater.
At the May workshop, DG GROW indicated that a study will analyse how legislation for biotechnologies and bio-based production could be simplified (by Autumn 2025). A mapping of current industrial bio-based value chains aims, by end 2025, to identify challenges and opportunities and to identify relevant raw materials which are currently imported into the EU and which could be replaced by EU-origin bio-resources. A third study will assess feasibility of introducing bio-based content requirements for public procurement of certain products and a fourth study (tbd) will look at voluntary sustainability labelling of bio-based products. Also, DG ENVI has launched work on assessment of fossil versus bio-based products for Product Environment Footprints. Regarding standards, DG GROW reminded that the 2024 work programme for European Standardisation includes developing new and revising existing standards for bio-materials and bio-based products, including defining terminology, harmonising testing methods and setting performance criteria. This is taken forward with a request call to the European Standardisation Organisation for a mapping and feasibility study for standards on (inter alia) bio-based products. DG GROW also presented the Biotech Hub under development which aims to identify and support relevant cluster organisations (1500 identified worldwide) and technology centres (50 identified in Europe).
“‘Next steps in advancing bio-based products and materials”, DG GROW workshop, Brussels and online, 21st May 2024
European Commission Communication “Building the future with nature: Boosting Biotechnology and Biomanufacturing in the EU”, COM(2024)137, 20th March 2024
Phosphates and potash are two of three agricultural inputs flagged as having very high geographical import dependency (along with soya, which is also a major import route for nutrients). Cereal production is identified as particularly dependent on fertiliser imports. The EU is estimated to be 68% dependent on imports of phosphates (for fertilisers) and 31% for potash (page 21, European Commission data), or 46%, 58% and 45% for P, K and N (page 26, based on Fertilizers Europe data). ESPP suggests that these differences in numbers show an increasing need to update EU phosphorus flow studies (from Kimo Van Dijk’s 2013 study, see SCOPE Newsletter n°106). The overall value ratio (imported inputs)/(total output) is <10% for EU agriculture, fisheries & aquaculture, food & beverages. Policy tools identified as addressing agricultural input security include trade relations, the Green Deal sustainability objectives and the Farm-to-Fork nutrient loss reduction targets, the CAP (Common Agricultural Policy, inc. support for nutrient management) and Organic Farming. Proposed actions include reducing consumption of animal products.
“The dependency of the EU’s food system on inputs and their sources”, study for the European Parliament Agriculture and Rural Development PE 747.272 - March 2024 HERE.
“Fertilizer Industry Facts & Figures 2023”, Fertilizers Europe 2023, June HERE.
The Opinion concerns only catering waste and similar (Animal By-Products Cat.3). For such compost to be authorised in EU fertilisers, DG SANTE must now modify the ABP Regulation annexes to include the considered parameters. This would then automatically lead to authorisation in the EU Fertilising Products Regulation CMC4 This dossier, submitted by the European Compost Network (ECN) via Belgium national authorities, was first considered by EFSA in 2020, when EFSA requested further evidence on neutralisation of thermoresistant viruses. The dossier was resubmitted with additional data in mid-2023 and EFSA’s positive Opinion was adopted on 14th March 2024. EFSA considers that the two proposed alternative composting parameter specifications both achieve reduction in pathogens and viruses equivalent to the composting parameters currently specified in the ABP Regulations. The current ABP Regulation parameters are: ≥70°C for ≥1 hour with particle size ≤12 mm. The new parameters, based on tunnel composting processes, are: ≥55°C for ≥72 hours with particle size ≤200 mm and ≥60°C for ≥48 hours with particle size ≤200 mm. The EFSA positive Opinion concerns only Cat.3 ABPs as specified (catering and cooking wastes from restaurants, canteens and households and similar discarded food processing wastes = in effect “biowaste”), including when mixed with non-ABP materials.
“Two alternative methods for treating animal by-product-derived materials in composting”, ECN, 27th May 2024
“Evaluation of alternative methods of tunnel composting (submitted by the European Composting Network) II”, adopted 14th March 2024, EFSA Journal 2024;22:e8745, DOI.
Innovative new DOC (deoxychlorination) process extracts volatile phosphorus compounds from a variety of sources including bone meal ash or phosphate rock. This material can be directly converted into phosphoric acid for production of plant-available inorganic fertilisers or inorganic phosphate chemicals. The process uses as inputs a chlorine source (chlorine is cycled in the system) and water or alcohols (for esterification). In the latter case, the DOC process could potentially produce some industrial organophosphorus esters directly, bypassing P4, but not all chemicals which currently depend on P4. Applications of these organophosphorus esters include surfactants (e.g. PA100, PAE800), plasticisers (e.g. TPHP, IPP), fire resistant fluids (triaryl phosphate esters) and flame retardants (TEP, TNBP). Work is underway to extend the range of chemicals which currently depend on P4 to be manufactured via DOC process. The key process runs at medium temperature (60-100°C) with possibility for heat recycling. The UCD (University College Dublin) research Team led by Dr K. Nikitin and Dr S. Hodge works in close collaboration with fertiliser and food industry experts.
The process has been successfully demonstrated to date on a small lab scale of input materials processed including manure ash, sewage sludge ash, struvite and vivianite. The project aims to further widen the range of materials, including low-grade phosphate rock, improve the extraction yield (objective 90-95%) and achieve pilot scale (batch mode 100-1000 g) and develop a continuous flow version. The plant availability of fertiliser produced via DOC has been fully confirmed by in-vivo plant trials.
Dr Kirill Nikitin Team leader at UCD says “Our process is entirely different from existing thermal and wet extraction technologies. We hope that ESPP membership will enable SINFERT innovation to dialogue with significant industry players to look for partners to develop to further stages of industrial uptake. We are looking to actively engage with interested stakeholders to blueprint this new process. We are looking to work with chemical manufacturing experts to quickly improve the DOC process in terms of efficiency, economic viability and commercialisation potential”.
The SINFERT project has been selected by Science Foundation Ireland (SFI) ‘Future Food Systems Challenge” programme for a duration of up to 4-5 years subject to outputs https://www.sfi.ie/challenges/future-food-systems/SINFERT. For more information: presentation at ESPP’s NERM Conference April 2024 here. Contact
EkoBalans develops integrated solutions for processing residual streams from biogas production, the food industry, and agriculture, into circular fertiliser products, including struvite and ammonium sulphate recovery. Today, EkoBalans delivers and operates such facilities and offers complete concepts from feasibility studies and pilot-scale facilities to refinement and product marketing. The aim is to combine technologies and other technical solutions in practical operation, to transform waste water treatment plants into recycling facilities, contributing to the circular economy and to addressing climate and environment challenges. EkoBalans’ nitrogen recovery technology, eco:N, combines ammonium stripping and absorption/crystallization to produce solid ammonium sulphate, using EkoBalans’ own specific system configuration, pre-treatment and ammonium sulphate harvesting process. Up to 95% of ammonium-N can be removed with eco:N. The eco:N process can be preceded by phosphorus extraction as fine particle struvite with EkoBalans' technology eco:P. The preferred business model is buy-back of the recovered ammonium sulphate and/or struvite for use with other secondary raw materials in the production of Ekobalans' organo-mineral fertilisers. EkoBalans is interested in cooperation for sales of the fertiliser product on local markets. We have a high interest in ESPP since we find the network vital to spread and share information about this important topic to many international stakeholders.
https://ekobalans.se/en/
Veas, Norway’s largest municipal wastewater treatment plant, has obtained the CE-mark for its recovered ammonium sulphate solution, according to the EU Fertilising Products Regulation 2019/1009 EU Part, in PFC 1 and CMC 15. Veas treats around 800 000 p.e. wastewater from Oslo. Ammonia is recovered from the digestate dewatering liquor, after anaerobic digestion of the sewage sludge. The digestate solids are used as an organic fertiliser in local agriculture. A substantial fraction of the total nitrogen load entering the Veas plant is recovered, resulting in a 37 - 40 % (c. 8% N) ammonium sulphate solution. In 2023, around 4 000 tonnes of solution were recovered (over 300 tN). The ammonium sulphate product is CE certified (FPR PFC 1 and CMC 15) by CerTrust (Notified Body). The company Acinor AS is distributing the product which has been sold to Denmark, Sweden and United Kingdom as well as domestically.
“VEAS in brief” HERE.
Nordic Council of Ministers document describes BAT (Best Available Technologies for nutrient reduction and reuse in land-based aquaculture, underling the importance of fish sludge nutrient recycling for the circular economy. The report notes that the EU has no specific regulatory framework for aquaculture. It remains not covered by the updated Industrial Emissions Directive. Fish sludge, consisting of faeces and uneaten feed, contains significant phosphorus and nitrogen: 2-3% P/TS, 4-11% N/TS, Estevez et al. 2022). Fish sludge can be used as a fertiliser and/or for energy production, generally after processing, for example by thickening (sedimentation, filtration), drying, anaerobic digestion, pyrolysis, bio-oil or syngas, incineration. Use as fertiliser may be limited by transport/processing costs, zinc or possibly other heavy metal levels and salinity for marine fish. EU regulations are considered to pose important obstacles to fish sludge nutrient reuse and recycling, in particular the exclusion from EU fertilisers and animal by-products regulations. These effectively limit fertiliser use to within the country of production (if allowed there) and exclude trade of fertilisers produced from fish sludge.
“Best Available Techniques for Reduction and Reuse of Emissions in Nordic Land-based Aquaculture”, Nordic Council of Ministers, 2023, 154 pages HERE.
SCOPE Newsletter: www.phosphorusplatform.eu/SCOPEnewsletter eNews newsletter: www.phosphorusplatform.eu/eNewshome
If you do not already receive ESPP’s SCOPE Newsletter and eNews (same emailing list), subscribe at www.phosphorusplatform.eu/subscribe
LinkedIn: https://www.linkedin.com/company/phosphorusplatform
Slideshare presentations: https://www.slideshare.net/phosphorusplatform - Twitter: @phosphorusESPP
YouTube https://www.youtube.com/user/phosphorusplatform
Austria is now the third European country, after Switzerland and Germany, to make P-recycling from sewage sludge legally obligatory (from sewage works ≥ 20 000 p.e., by 2033). Published as part of the Waste Incineration Ordinance (Abfallverbrennungsverordnung 2024 – AVV 2024), the new regulation requires that, from 1st January 2033, all sewage works with design capacity works ≥ 20 000 p.e., must either incinerate their sewage sludge with P-recycling or must otherwise recover 60% of the sewage works inflow phosphorus. Where phosphorus is recycled from sewage sludge either 80% of the P must be recovered from the ash, or the totality of the ash must be used to produce a fertiliser compliant with Austrian fertilisers regulations. Sewage sludge and/or sludge incinerator plant operators will have to report annually the P-content of ashes or P inflow to the sewage works, type of P-recovery, tonnage of P recovered annually, tonnage of sewage sludge (DM) annually.
Austria Abfallverbrennungsverordnung 2024 – AVV 2024, CELEX 32010L0075, published in the Austrian Official Journal, 13th May 2024 (see section 4) https://www.bmk.gv.at/themen/klima_umwelt/abfall/recht/vo/abfallverbrennung.html
Please subscribe www.phosphorusplatform.eu/Subscribe
Link to www.phosphorusplatform.eu/eNews086
Download as PDF
ESPC5, the 5th European Sustainable Phosphorus Conference, 8-9 October, Lleida, Spain (site visits 10th October) will focus on the climate and eutrophication challenges of phosphorus management in the Mediterranean and on synergies with anaerobic digestion of manure (Catalunya is a major livestock production region with proactive biogas development policies). Field visits: Fertilizantes del Ebro, biogas plant with digestate valorisation. ESPC5 will also celebrate the 10th Birthday of ESPP, and look at progress and perspectives ten years on from the first ESPC Conference in 2013.
ESPC5 follows on from ESPC4 Vienna, 2022 which, with 320 participants onsite and 80 online, was the biggest conference on phosphorus ever worldwide.
- ESPC4 Vienna 2022: SCOPE Newsletter n°143
- ESPC3, Helsinki 2018: SCOPE Newsletter n°127
- ESPC2, Berlin 2015: SCOPE Newsletter n°111
- ESPC1, Brussels 2013: SCOPE Newsletter n°092
Abstracts for ESPC5 are invited by 30th May 2024 on:
Abstracts for oral and posters: free format, must include: short title, names and emails of all authors, summary of maximum 500 words. ESPP members can take a short pitch, presenting company technologies or R&D perspectives. Send to by 30th May 2024.
ESPC5 is organised by BETA technological Center (University of Vic), with support of ESPP and of the Catalunya Region. Lleida is one hour train from Barcelona. Full programme, conference fees, registration link (will open soon), travel information: https://www.phosphorusplatform.eu/espc5.
ESPP’s NERM Nutrients in Europe Research Meeting brought together nearly 200 participants in Brussels, online, for research PhD students’ pre-meetings, posters, parallel sessions and for a policy meeting with the European Commission. The conference was organised with the five Horizon2020 projects Fertimanure, Lex4Bio, Walnut, Sea2Land, Rustica. The conference showed that a wide range of research continues around nutrient recycling, in particular looking at new or improving known nutrient recovery technologies, further demonstration of agronomic performance of recycled nutrient products (noting the need for long-term field trials), environmental and LCA aspects. Conclusions noted the need for better information about nutrient recycling and organic fertiliser processing, products, markets; information of farmers; regulatory complexity and policies. The conference included a site visit to the BioSterco farm, treating over 5 000 t/y of manure (its own pig manure and from nearby farms) by nitrification/denitrification with Detricon nitrogen recovery from the manure (recovering ammonium salt solution) with production of a solid organic fertiliser and of purified water (reverse osmosis).
NERM, Brussels & online, 16-17 April, including site visits.
A full summary of the conference will be published as an ESPP SCOPE Newsletter soon.
Public consultation to 17th May on amendment of Annex III of the Nitrates Directive to allow certain recovered nutrient products to be exempted from the 170 kgN/ha spreading limit. This limit is applicable for “manure … even in a processed form” in Nitrate Vulnerable Zones, whereas synthetic fertilisers generally have a higher spreading limit. The Commission’s proposed amendment partly takes the JRC “Renure” proposals, but allows only three eligible recovered products: ammonium salts from gas scrubbing, “mineral concentrates” from reverse osmosis, precipitated struvite. The proposed criteria also specify that the manure processing must have increased the mineral-N and that the resulting products must be of “consistent quality”.
This is presented as an “interim solution”. By limiting to these three specific recycled nutrient products, the proposal avoids the fact that the JRC Renure criteria (total N must be ≥ 90% mineral, or ratio organic carbon / total N < 3), without other criteria, would be difficult for Member States regulatory authorities to verify (would be passed by raw manure spiked with urea) and would allow scarcely processed manure and some raw manure fractions.
The proposal includes additional requirements: copper and zinc limits, pathogen limits, quality control, labelling requirements, and also requirements which would appear to require specific modifications of NVZ Action Plans wherever these recovered products are to be authorised > 170 kgN/ha: tightening land application limits for all fertilisers, prevention of air emissions, specific consideration of the authorised products in Action Plans, especially as regards Natura 2000 and drinking water abstraction. Also, authorisation of the recovered products requires that “Member States ensure that livestock numbers and manure production do not increase as a result”.
Commission Directive amending Annex III of the Nitrates Directive consultation to 17th May. Input: 4000 characters plus optional document.
European Commission DG Research is asking for feedback on expected impacts and outcomes for each of nearly 50 thematic and functional clusters etc. of the Horizon Europe 2025 Work Programme. Deadline for input: 6th May. The themes (called “Destinations”) relevant to nutrient management, in Cluster 6 (Food, bioeconomy, natural resources, agriculture, environment): Destination 2 Fair, healthy and environment-friendly food systems from primary production to consumption, Destination 3 Circular economy and bioeconomy sectors, Destination 4 Clean environment and zero pollution. The Commission’s proposals include for Destination 2 “Farmers are enabled with tools, innovations and practices to sustainably manage natural resources (in soil, water, nutrients, biodiversity)” and for Destination 4 “Farmers are empowered to make informed management decisions on water, carbon, nutrients and greenhouse gas balances for environmental and economic sustainability, preventing and reducing pollution from agriculture” and “Advanced water-nutrient-soil management tools that integrate multidimensional data from sampling, remote sensing and other data sources to enable context-specific decision making at farm level”. For each Destination, there is a specific survey (you are invited to respond to more than one survey) with one or two tables to select priorities between proposed impacts and outcomes, plus possibility to submit short comments (300 – 1500 characters).
European Commission, Research and innovation, “Feedback opportunity for Horizon Europe work programme 2025”, surveys online HERE. Open to 6th May 2024.
CEN is looking for experts on analytical methods for fertilising products, for working groups developing standards to support the EU Fertilising Products Regulation (FPR), in particular an expert on analysis of organic carbon content. The European Commission has mandated CEN (Comité Européen de Normalisation, the European Committee for Standardization) to develop a significant number of new EU analytical method standards for the testing of different parameters in CMCs and PFCs of the FPR. Industry and expert participants are welcome for the relevant working groups. CEN is specifically also looking for a project leader to develop the method and organise inter-laboratory study for the standard “Inorganic fertilizers - Determination of the organic carbon content organic carbon". The expert will be supported by the relevant Working Group in TC 260, and budget is available for the compensation of costs.
Contact CEN
Animal by-products (ABPs) in EU fertilising products:
Discussion of a draft Commission “Frequently Asked Questions” answer on the status of inclusion of ABPS in CE-mark fertilisers (under the FPR) concluded that at present, to ESPP’s understanding:
All stakeholders with information concerning the ABPs listed in 2023/1605 (current use as fertiliser, e.g. under national regulations, processing, markets and potential, nutrient content and agronomic benefits, contaminants and safety) are invited to submit these to the QLab study via the questionnaire here (if possible before end April).
ABPs are excluded from the NMI study underway into possible new materials/processes for FPR CMCs (see below) and DG GROW indicated that other ABPs could not be discussed in the EU Fertilisers Expert Group until DG SANTE has validated an ‘ABP End Point’ (DG SANTE delegated regulation amending the ABP Regulations). ESPP therefore proposed, with other organisations, to take this forward outside the official EU Expert Group.
Stakeholders with knowledge of other ABPs, or of other ABP processing methods, relevant to use in fertiliser and which are not in 2023/1605 are invited to send information to (nature of the material / process, uses in fertilising products).
NMI study on possible new input materials for EU fertilising products (possible new CMCs / new CMC processes).
This study (see ESPP eNews n°85) will take 1-2 years and could in some cases, lead to draft amendments to include new materials or CMC-processes into the FPR. However, the list of materials / processes to be studied will be defined in coming weeks. Input is invited from companies and stakeholders on secondary nutrient materials and processing methods not currently included in the EU FPR, as specified in the ‘questionnaire’ on page 28 of the NMI study inception report:
Input can concern any material / process listed in the NMI study inception report chapters 3-4-5-6 (pages 8-11)
Animal by-products and “derived products” (ABPs) are not included in the NMI study, but ESPP is collecting information on ABPs and ABP processing methods (not currently covered in 2023/1605) to prepare a concerted request to the European Commission to address currently “missing” ABPs – so information to ESPP is welcome.
ESPP is inputting to the NMI study with a table of possible new CMC input materials / processing methods. Draft is on www.phosphorusplatform.eu/regulatory (under EU Fertilising Products Regulation -> “ESPP list of possible new CMC materials & processes 21_4_24”). Any comments or additions to this table are welcome.
Please send comments and input to the NMI report and/or the ESPP table, by 13th May 2024, to
CE certification process and conformity assessment
Giel Tettelaar, EFCI Register, presented proposals from the Notified Bodies Coordination Body, in particular to clarify and make more feasible certain requirements of the certification procedures, including distinguishing between periodicities for sampling and for audits, and not requiring certification visits to every site providing similar input materials (e.g. a number of sewage works providing recovered struvites from the same process). For reasons unclear, one Member State objected to the “assumption of conformity” currently applied by NOBOs, that is if there is no reason why a specific contaminant should be present in a material (not in inputs, not generated in processing), then it should not be necessary to test for it, as currently specified in the Commission’s FPR Frequently Asked Questions document (Q 10.6). ESPP considers this as important to avoid unnecessary testing costs and as justified and pragmatic.
Clarifications via the Commission FAQ document
A number of new Q&As were validated for inclusion into the Commission’s “Frequently Asked Questions” document, which effectively provides guidance on interpretation of the FPR. It is clarified that plant materials under CMC2 can be “waste” or “by-product”. Clarification of the definition of “biowaste” (in CMCs 3 and 5) was agreed, noting the “comparable” waste streams are also included, such as food waste flows from factories for example producing sandwiches or ready-to-cook meals (e.g. offcuts, discarded food materials because of deterioration) but not sludges or specific processing flows from factories processing e.g. vegetables, dairy products, pet foods, biofuels …
“Evaluation” of the EU Fertilising Products Regulation
The evaluation of the FPR will be launched by the European Commission in coming months, as required in art. 49 of the Regulation, with the aim of identifying if certain aspects of the Regulatory text should be modified (see ESPP eNews n°84). Art. 49 already indicates certain points which must be evaluated (contaminants including cadmium and uranium, functioning of the internal market, conformity assessment, market surveillance, optional harmonisation). The Commission is currently defining the terms of reference to commission a study to support this evaluation.
EU Fertilisers Expert Group documents (CIRCABC public) HERE.
ESPP has commissioned a risk analysis of use as fertiliser of combustion ash from “disposal” of Cat.1 ABPs. The European Commission DG SANTE has requested an Opinion on safety of such ash from EFSA (European Food Safety Agency). The analysis has been commissioned by ESPP to SAFOSO Switzerland, animal health expert consultants. Because there is to our understanding no proof that incineration eliminates prion infectivity (TSE / BSE “mad cow disease”), see ESPP eNews n°73, the SAFOSO risk analysis will be based on: number of BSE cows in Europe (very low), dilution of material in processing, risk reduction in processing, risk reduction in ash use as fertiliser. This will be supported by evidence that Cat.1 ash has been for decades and continues to be widely used as fertiliser in the UK (and elsewhere?) with no identified infection of animals or humans, and similarly for Cat.1 ash handling in landfills etc... We thank EFPRA for providing helpful input to this study.
If you have any information which could support this study (scientific report references, examples or data of Cat.1 ash use as fertiliser in other countries in the world, information on Cat.1 ash handling and storage in landfills, please contact )
In reply to a letter from ESPP, DG SANTE confirms that an Opinion on Cat.1 ABP ash is requested from EFSA (to be completed by 2025) and indicates position on nutrients from ABP ash to animal feed, algae grown in manure. ESPP has launched a study to input to the EFSA Opinion on Cat.1 ash (see above). On possible use of nutrients recovered from ash in animal feed, DG SANTE considers that this should be considered after the EFSA opinion on Cat.1 ash use as fertiliser. On algae grown in manure, DG SANTE considers that there is no possibility for use of the algae nor of materials extracted from them in animal feed nor in fertilisers, but that algae grown in “processed manure” can be used in fertilisers (grown in manure which has been ‘sterilised’ as defined in the ABP regulations).
Letter from ESPP to DG SANTE 29th January 2024 and reply of 3rd April 2024 HERE.
Sixteen organisations, including ESPP, have sent an open letter to the European Commission calling for a comprehensive review of EU regulation of ABPs to enable circularity whilst continuing to ensure safety. We underline our complete commitment to ensuring safety, and perception of safety by consumers and stakeholders, but suggest that current ABP regulation is fragmented and incoherent, with different value chains treated differently and incoherent vocabulary, leading to regulatory obstacles, excessive demands on administrative resources and consequent failure to address these. The letter calls on the Commission to include a review of ABP regulations in the next 2024-2029 work programme. A number of examples provided by stakeholders are presented in annex, including difficulty to use in animal feed amino acids which are recognised human food ingredients, failure to recognise in the EU Fertilising Products Regulation ‘alternative’ temperature-time profiles for composting and anaerobic digestion despite these being safely used in Member States, failure to recognise complete transformation of ABPs which eliminate risks (e.g. recovery of nutrients from ashes), absence of pathways to coherently assess new processing pathways or materials (e.g. algae grown in manure).
Open letter to the European Commission, 3rd April 2024.
Report by Wageningen UR identifies over 60 secondary nutrient materials which are authorised for use in fertilisers in The Netherlands but not in the EU Fertilising Products Regulation (FPR). This includes:
The WUR report recommends to :
‘Kunnen de afval- en reststoffen uit de Uitvoeringsregeling Meststoffenwet beantwoorden aan de Europese Meststoffenverordening?” (Can the waste and residues from the Netherlands Fertilisers Act Implementation Regulations comply with the European Fertilizers Regulation?), in Dutch, 58 pages, 2-page summary in English, I. Regelink et al., Wageningen Environmental Research, report n°3317, ISSN 1566-7197, Jan. 2024 DOI.
ESPP is seeking help to use Artificial Intelligence (AI). We wish to contract advice and support to set up AI that can help us find new and important updates about phosphorus sustainability and nutrient recycling. Our goal is to use AI to better share information with our network. We might need help setting this up, training AI, or guiding a programmer to create an AI tool. Right now, we are overwhelmed with many alerts from the internet and scientific sources every week, even though we try to target our alert filters. We hope AI could read these alerts and other documents and pick out those which are most likely to be important to us, such as new ideas, big changes in technology or markets, new full-scale nutrient recycling plants or updates in regulations. We also want it to work in different languages, not just English. The main problem is to figure out what news is truly new and exciting, rather than just getting summaries of many research papers on topics we already know about. It’s not certain if AI can really do this, but we might find out by trying.
If you would be interested in taking forward an initial feasibility analysis of AI for ESPP, contact
Comprehensive report by European Biogas Association (EBA) explains digestate production, properties and processing, benefits for climate and for soil health and details the regulatory framework at the EU and Member State levels. EBA estimates that by 2050 digestates in Europe will contain 9.7 Mt of nitrogen, 1.7 Mt of phosphorus and 0.8 Mt of potassium, that is around 90%, 60% and 25% respectively of nutrients currently in mineral fertilisers. Nutrient content and availability in digestates are explained, both rapidly available and long-term nutrients, depending on different input materials and digestate processing. Benefits for climate and soil health are discussed, including reductions in emissions from raw organic wastes, soil carbon sequestration, impacts on soil microbial activity, soil structure, water retention, nutrient retention, pH buffering. The EU regulatory framework is outlined, including waste, fertiliser, animal by-product regulations and the Nitrates Directive. National regulatory frameworks are specified for Member States, including waste status, fertiliser regulations, quality schemes and specific national regulations. The report concludes that the complexity of regulatory frameworks is an obstacle to digestate valorisation, in particular where digestate does not have fertiliser status under national fertiliser regulations. The Nitrates Directive restriction on application of digestates from manure is considered a key obstacle. Better information on the value of digestates as an organic fertiliser and soil improver is needed.
“Exploring digestate’s contribution to healthy soils”, European Biogas Association, March 2024, 40 pages LINK
Ostara’s recovered struvite, from municipal wastewater, has been validated for EU Certified Organic Agriculture under the EU regulation 2021/1165 (ESPP eNews n°73). This follows the successful EU Fertilising Products Regulation of Ostara’s Crystal Green Pearl® recovered struvite (CE-mark, see ESPP eNews n°82), which is a prerequisite requirement for EU Organic Farming certification. The FiBL / SKAL validation obtained by Ostara also confirms that the Ostara recovered struvite complies with the criteria of The Netherlands Organic Farming input list. Ostara states: “Crystal Green Pearl is a granular fertilizer with an analysis of 5% Nitrogen (N), 28% Phosphorus Pentoxide (P2O5), and 16% Magnesium Oxide (MgO). This one-of-a-kind fertilizer source is produced with Ostara’s nutrient recovery solutions that recover nutrients from wastewater and prevent excess, water soluble nutrients from entering global water systems. Crystal Green Pearl is minimally water-soluble, although it’s 100% soluble in weak organic acids naturally exuded from plants. This maximizes nutrient availability … highly efficient phosphate fertilizers to release nutrients in response to crop demand. Crystal Green fertilizers are proven to maximize yield, enhance soil health and significantly reduce phosphate tie-up, runoff and leaching, thereby improving food security while protecting the environment.”
“Ostara Secures Certified Organic Registration of Recovered Nutrients for Crop Production”, Ostara, 17th April 2024, HERE.
FiBL organic validation for Ostara recovered struvite Crystal Green HERE.
Plasma N-enrichment and N-recycling technology of N2 Applied (ESPP member) will be rolled out by one of Norway’s main agricultural cooperatives, Felleskjøpet Agri. N2 Applied is also talking to the Bill & Melinda Gates Foundation. N2 Applied’s plasma technology both fixes nitrogen from the atmosphere and stabilises nitrogen already present in manures or digestates, so enabling storage and efficient recycling to crops, whilst also reducing ammonia and methane emissions (see ESPP eNews n°84). Felleskjøpet Agri has over 50 000 cooperative members and an annual turnover of c. 15 billion €. A two-year letter of intent will roll out the plasma N2 Applied’s technology to farmers as part of the cooperative’s advice and services to farmers towards sustainability and balanced fertilisation and cost benefits, enabling them to better use their own manure as crop fertiliser with reduced environmental impacts.
“Felleskjøpet Agri and N2 Applied enters agreement”, 19th March 2024, HERE.
Bill & Melinda Gates Foundation and International Fertilizer Association (IFA), Marrakech, Morocco, March 2024 HERE
Bill Gates video “Why I love fertilizer”, 2018, HERE.
Powder fire extinguishers widely use mono ammonium phosphate (MAP). Lab tests showed that milled struvite, coated with DOPO-VTS, performs better to extinguish fires than MAP or neat struvite and can be stored at up to 100°C. It is not specified whether the struvite used was recovered or synthetic. The struvite was ball-milled first with ethanol, then with hydrophobic fumed silica, to fine particle size (90% < 20 µm diameter). It was then coated with 3% w/w DOPO-VTS, a derivative of the commercial phosphorus flame retardant DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) reacted 1:1 with vinyltrimethoxysilane. Fire extinguishing performance was tested using burning heptane basin tests. Heat absorption and fire temperature decrease were better with the coated ultrafine struvite, fire extinguishing time was shorter and powder consumption was lower, compared to than with MAP (similarly ground), and also compared to uncoated struvite. Also, the coated struvite maintained its fire extinguishing properties when heated to 100°C, so could be stored in varying temperatures.
“Preparation and fire extinguishing mechanism of novel fire extinguishing powder based on recyclable struvite”, Z. Liang et al., Materials Today Communications 34 (2023) 105410, DOI.
Lab tests using PFAS-loaded sand show 97% removal from the sand at 400°C or higher but significant transfer of organofluoride compounds to the offgas. The tests used purified sea sand mixed with 24 different PFAS (per- and polyfluoroalkyl substances) at total 2000 ng PFAS/g sand (0.0002% DM), in a 25mm diameter 40 cm high lab pyrolyser with residence time 2 hours (significantly higher than industrial pyrolysis units). Because PFAS may be broken down to non-analysed shorter-chain PFAS, both PFAS (27 PFAS chemicals) and total organofluorides were analysed in both the pyrolysed material and in the laboratory pyrolyser offgas (using an acetone trap). In the PFAS-sand, organic fluorine removal was only c. 40% at 300°C, rising to 97% at 400°C or higher. Removal of PFAS from the sand was 99% at 400°C and the 27 analysed PFAS were non-detectable at 500°C or higher. The analysed PFAS were detected in the offgas up to 500°C pyrolysis temperature (not at 600°C). However, around 50% of the total initial PFAS fluorine was found as organofluorides in the offgas at 400°, 500°C, 600°C and 700°C. Similar tests were carried out using dried granulated sewage sludge from Bohuslavice‑Trutnov municipal sewage works, Czech Republic, again showing >96% removal of organofluorides at 400°C with significant detection in the offgas. Sludge biochar from a commercial sludge pyrolysis unit operating at this sewage works was tested and the analysed PFAS chemicals were not detectable. This unit operates at 600°C with a residence time of 10 minutes.
“Removal of per‑ and polyfluoroalkyl substances and organic fluorine from sewage sludge and sea sand by pyrolysis”, M. Husek et al., Biochar (2024) 6:31 DOI.
SCOPE Newsletter: www.phosphorusplatform.eu/SCOPEnewsletter eNews newsletter: www.phosphorusplatform.eu/eNewshome
If you do not already receive ESPP’s SCOPE Newsletter and eNews (same emailing list), subscribe at www.phosphorusplatform.eu/subscribe
LinkedIn: https://www.linkedin.com/company/phosphorusplatform
Slideshare presentations: https://www.slideshare.net/phosphorusplatform - Twitter: @phosphorusESPP
YouTube https://www.youtube.com/user/phosphorusplatform
European Commission DG Research is asking for feedback on expected impacts and outcomes for each of nearly 50 thematic and functional clusters etc. of the Horizon Europe 2025 Work Programme. Deadline for input: 6th May. The themes (called “Destinations”) relevant to nutrient management, in Cluster 6 (Food, bioeconomy, natural resources, agriculture, environment): Destination 2 Fair, healthy and environment-friendly food systems from primary production to consumption, Destination 3 Circular economy and bioeconomy sectors, Destination 4 Clean environment and zero pollution. The Commission’s proposals include for Destination 2 “Farmers are enabled with tools, innovations and practices to sustainably manage natural resources (in soil, water, nutrients, biodiversity)” and for Destination 4 “Farmers are empowered to make informed management decisions on water, carbon, nutrients and greenhouse gas balances for environmental and economic sustainability, preventing and reducing pollution from agriculture” and “Advanced water-nutrient-soil management tools that integrate multidimensional data from sampling, remote sensing and other data sources to enable context-specific decision making at farm level”. For each Destination, there is a specific survey (you are invited to respond to more than one survey) with one or two tables to select priorities between proposed impacts and outcomes, plus possibility to submit short comments (300 – 1500 characters).
European Commission, Research and innovation, “Feedback opportunity for Horizon Europe work programme 2025”, surveys online HERE. Open to 6th May 2024.
Public consultation to 17th May on amendment of Annex III of the Nitrates Directive to allow certain recovered nutrient products to be exempted from the 170 kgN/ha spreading limit. This limit is applicable for “manure … even in a processed form” in Nitrate Vulnerable Zones, whereas synthetic fertilisers generally have a higher spreading limit. The Commission’s proposed amendment partly takes the JRC “Renure” proposals, but allows only three eligible recovered products: ammonium salts from gas scrubbing, “mineral concentrates” from reverse osmosis, precipitated struvite. The proposed criteria also specify that the manure processing must have increased the mineral-N and that the resulting products must be of “consistent quality”.
This is presented as an “interim solution”. By limiting to these three specific recycled nutrient products, the proposal avoids the fact that the JRC Renure criteria (total N must be ≥ 90% mineral, or ratio organic carbon / total N < 3), without other criteria, would be difficult for Member States regulatory authorities to verify (would be passed by raw manure spiked with urea) and would allow scarcely processed manure and some raw manure fractions.
The proposal includes additional requirements: copper and zinc limits, pathogen limits, quality control, labelling requirements, and also requirements which would appear to require specific modifications of NVZ Action Plans wherever these recovered products are to be authorised > 170 kgN/ha: tightening land application limits for all fertilisers, prevention of air emissions, specific consideration of the authorised products in Action Plans, especially as regards Natura 2000 and drinking water abstraction. Also, authorisation of the recovered products requires that “Member States ensure that livestock numbers and manure production do not increase as a result”.
Commission Directive amending Annex III of the Nitrates Directive consultation to 17th May. Input: 4000 characters plus optional document.
Please subscribe www.phosphorusplatform.eu/Subscribe
Link to www.phosphorusplatform.eu/eNews085
Download as PDF
NERM Nutrients in Europe Research Meeting (6th Phosphorus in Europe Research Meeting). Nearly 200 registrants to date for the conference and its pre-meetings. Speakers include the European Commission (DG AGRI, DG TRD), EIP-AGRI Support Facility/EU Cap Network, EU-FarmBook, NUTRI-KNOW Thematic Network. Parallel sessions on nutrient recovery technologies, bio-based fertilisers. Organised with Fertimanure, Lex4Bio, Walnut, Sea2Land, Rustica.
NERM, Brussels & online, 16-17 April, including site visits: programme & registration
We are looking for someone to put together a listing of emails of companies selling, producing or processing, in Europe, organic or organo-mineral fertilisers. This will enable ESPP to communicate on SOFIE2025 and nutrient recycling. Listing could also cover companies providing processing technologies: such as granulation, drying, packaging … Candidates can be individuals, companies or research institutes, subject to being able to emit an invoice or payable note for fees. Work to be done before end summer 2024. Objective: collate list of companies, contact email(s), general types of organic fertiliser sold/processed, website, covering all EU countries plus UK, Switzerland, Norway, Turkey, Ukraine, North Africa.
Send short description of experience and competence, plus estimated price to by 15th May 2024
The EU CBAM (Carbon Border Adjustment Mechanism) has entered into force taxing imports of five industrial products, including nitrogen fertilisers, as a function of greenhouse emissions. The CBAM Regulation 2023/956 and Implementing Regulation 2023/1773, which entered into force on 1st October 2023, covers imports of “nitrogen-containing fertilisers”*, iron and steel, cement, aluminium, and electricity. CBAM aims to tax the greenhouse emissions embedded in imported fertilisers (scope 1 and 2: direct emissions in production, emissions related to electricity use in production) and covers CO2 and NOx emissions. The objective is to compensate costs for EU manufacturers who have to pay ETS (Emissions Trading Scheme) tariffs for their climate emissions. The EU CBAM Regulations define the methodology for calculating the embedded emissions for the concerned products, based either on real emissions, or in the absence of data, on values for the relevant industry sector in the specific exporting country, or if this is also not available, then based on the average emission intensity of the worst performing EU installations. Fertilizers Europe has welcomed the EU CBAM, subject to appropriate conditions as ensuring fair competition for EU producers against fertiliser imports. However, Fertilizers Europe expresses concern that CBAM cannot provide a mechanism to address exports of fertilisers from Europe, which risk being replaced by fertilisers with a higher carbon footprint in user countries outside Europe.
EU CBAM Regulation 2023/956 “establishing a carbon border adjustment mechanism” and Implementing Regulation 2023/1773,
* Regulation 2023/956 – Annex I , Ch. 3105 and Ch. 3102, Implementing Regulation 2023/1773, Annex II – 3.10. Mixed fertilisers – in effect covers all N, NP, NK and NPK fertilisers.
After over 5 000 comments were received to the public consultation on PFAS restriction in 2023, ECHA has announced that the EU’s scientific committees will evaluate restriction for uses in different sectors over the coming six months. Uses which will be considered are: consumer products, cosmetics, ski wax, metal plating and processing, upholstery - leather – carpets – clothing, food contact materials and packaging, oil and mining industries. Other sectors, such as machinery and medical, are not yet on the calendar. Following the opinions of the two scientific committees (Risk Assessment RAC and Socio-Economic Analysis SEAC), ECHA will finalise restriction proposal reports, and then the European Commission with the Member States will take decisions.
In the US, legal actions against companies is accelerating, based often on accusations of PFAS contamination of groundwater and drinking water. Litigation is targeting the chemical companies manufacturing PFAS, but also companies using it. Litigation in some cases is being brought by cities operating water systems. Litigation also concerns PFAS in sludges, both from industry (e.g. paper industry). In a case reported recently in Europe by The Guardian, UK, farmers in Texas and an environmental NGO are suing the US Environmental Protection Agency for not adequately regulating PFAS and a company which processes sewage sludge to organic fertilisers. Following litigation, the US courts approved in February a settlement requiring DuPont to pay nearly 1.2 billion US§ to public water systems across the US covering payments to water authorities who have already detected PFAS and costs of testing and then compensation to those which have not yet tested.
European Chemical Agency (ECHA) “Next steps for PFAS restriction proposal” 13th March 2024.
The Guardian “Legal action could end use of toxic sewage sludge on US crops as fertilizer” 12th March 2024.
The water industry (EurEau) is calling that “all uses of PFAS should be phased out rapidly” because PFAS cannot be effectively removed in sewage treatment, so accumulate in water, soil and foods. EurEau represents European drinking water and wastewater operators serving 500 million Europeans. The federation has sent an open letter to the President of the European Commission, Ursula von der Leyen, calling for universal restriction of PFAS. The federation underlines that PFAS (Perfluoroalkyl and Polyfluoroalkyl Substances) are today found in water, food, air, household products, are remanent and pose health risks. Removal of PFAS from drinking water is technically challenging, expensive, energy and resource consuming, and relies on activated carbon imported from China. PFAS in sewage hinders recovery and recycling of nutrients. EurEau consequently calls for a universal PFAS restriction, in line with the EU Chemicals Strategy for Sustainability and the Green Deal.
The European Environment Agency has published a communication stating that nearly 15% of teenagers in Europe show exposure to PFAS above EFSA Health-Based Guidance Values (HBGV).
EurEau position on PFAS: https://www.eureau.org/priorites/pfas
EurEau briefing paper “Sludge and the circular economy - the impact of PFAS”, July 2022
EurEau input to EU consultation on PFAS restriction, 18th September 2023 “Universal PFAS restriction - Consultation on Annex XV report”
EurEau open letter to the European Commission “No Green Deal with PFAS: Call to support the Universal PFAS Restriction proposal”, 4th March 2024.
European Environment Agency “Risks of PFAS for human health in Europe (Signal)”, 15th March 2024.
The IED revision, agreed by Parliament & Council, making strictest achievable pollution emissions limits mandatory, will improve industry material efficiency requirements, will cover more intensive pig & poultry farms, but not cattle farms. The Directive revision amendments have been provisionally agreed by Parliament, Council and the Commission (trilogue 29/11/2023), validated by Parliament (12/3/2024) and are pending Council final validation, before legal publication. The IED fixes mandatory pollution emission limits applicable to all covered factories and installations, currently around 50 000 across Europe. The revision extends coverage to include more intensive pig and poultry farms, down to 280 – 380 LSU “livestock units” (implemented progressively starting in 2030). The Commission estimates that this will increase the % of total EU pigs and poultry in covered farms from around 35% under the current IED, to around 70 – 80%. Cattle farms are however still not covered by the IED Directive: this will be reviewed by end 2026. Will also be reviewed the possibility to ensure that overseas producers of meat imported into the EU respect the same criteria. The revised Directive will require waste, resource efficiency, energy efficiency and raw material use targets for covered industries. The Directive is also extended to include certain metal mining / extraction activities (phosphate rock not included) and battery manufacture.
European Commission IED Review – Livestock farm data update 2016-2020 HERE.
Trilogue agreed Directive revision text: HERE.
European Parliament press release 12th March 2024.
EU input on revision of the NERC Directive asking that this integrate nutrient recycling and not only emissions limitation.
ESPP did not input to the EU consultation on evaluation of the Nitrates Directive, as members had differing positions.
ESPP input to the EU consultation on the NERC Directive (National Emissions Reduction Commitments), 14th March 2024, supporting the value of this Directive in limiting transboundary emissions of air pollutants across Europe (the Directive currently limits emissions of sulphur dioxide, nitrogen oxides (NOx but not N2O), ammonia, non-methane volatile organics, fine particles PM2.5), noting that limiting these N emissions is coherent with the EU Farm-to-Fork Strategy, EU Biodiversity Strategy and COP15 Convention on Biological Biodiversity objective to reduce nutrient losses by 50% by 2030 and suggesting that it should integrate recovery and recycling of nitrogen and sulphur from these emissions.
Concerning the Nitrates Directive, ESPP members did not agree on whether the Directive has been effective (since is adoption in 1991), whether to oppose re-opening of this Directive (which could lead to regression in protection of surface and groundwaters from nitrates) or to consider this necessary to address the obstacle posed to manure nutrient recycling (by the 170 kgN/ha limit for manure and “processed” manure), what forms of manure-recycled nutrient might be exempted from this limit (Renure criteria too lax and non-verifiable, but < 1% organic carbon not practically relevant …). Members also disagreed on whether or not to propose that the Directive should be widened to specifically address phosphorus as well as nitrogen.
ESPP input to NERC Directive (National Emissions Reduction Commitments) www.phosphorusplatform.eu/regulatory
Summary of discussions on Nitrates Directive at ESPP webinar 22nd February 2024 in ESPP eNews n°84.
EU public consultations on the Nitrates Directive (both closed 8th March 2024). Call for evidence: 248 contributions received (and published) and public consultation (1071 contributions received and validated, not yet published, pending analysis by the European Commission).
Feedback to the call for evidence from ESPP members: EurEau, N2-Applied, Ragn-Sells, SUEZ, TIMAC AGRO, Other ESPP members submitted to the public consultation, including to our knowledge: Fertilizers Europe, Nutribudget, submitted by Proman.
Request for information, for specific ABPs, on applicable national fertiliser legislation, agronomic effects, nutrient content, processing, heavy metals or other residues, health or environmental risks. The Cat2 and Cat3 ABPs concerned are insect frass, biofuel glycerine, meat and bone meal and derived DCP/TCP, blood products, hydrolysed protein, horn- skin and feather materials (as specified). The survey, open to all companies and stakeholders, is carried out by QLab, under contract from the European Commission, to support preparation of possible criteria or conditions for proposed inclusion of these materials as inputs to CE-Mark fertilising products (FPR CMC 10). This is because art. 42 of the FPR indicates that the Commission can modify the FPR CMCs only if proposed additional materials have the potential to be significantly traded within Europe and if there is evidence of their agronomic efficiency and of safety for health and for the environment.
“Survey to include new materials in CMC 10 to the Fertilising Products Regulation”, QLab for the European Commission SURVEY HERE.
Two CEN tenders open to 15th April to (1) prepare – coordinate, and (2) participate in laboratory ring tests for proposed new European Standards relating to organic and organo-mineral fertilisers for the Fertilising Products Regulation. The testing will concern the various different standards currently being developed by CEN (European Committee for Standardization) CEN/TC260/WG8 to support implementation of the EU Fertilising Products Regulation, that is verification of the different criteria and limits specified for Organic and for Organo-Mineral Fertilisers in this regulation (as per the mandate from the European Commission, a list of around 20 proposed test standards is included in the tender documents and draft EU standards (prEN) can be downloaded on the CEN tender web pages)
“Open calls for tender related to the Interlaboratory studies on Organic and organo-mineral fertilizers”, CEN, published 12/3/2024, submission deadline = 15/4/2024 HERE.
Open to 5th April: consultation on five draft Delegated Acts amending the Fertilising Products Regulation concerning biodegradability of fertiliser and mulch film polymers, microplastic polymers (in CMCs 1 and 11), Enterococcus testing. The five draft amending regulations are included in one single public consultation, open to 5th April 2024. The biodegradation criteria proposed for polymers are based on 90% ultimate degradation / mineralisation measures as evolved CO2, in soil and in water, after 2 years for mulch films and after four years for polymers used as fertiliser coatings or for water retention.
“EU fertilising products – Aligning biodegradability criteria for polymers to the REACH restriction on microplastics”. NOTE: the consultation web page title is unclear, this page in fact covers all five proposed Delegated Acts. Public consultation open to the public and all stakeholders. Deadline for response 5th April 2024. Response is free text of up to 4000 characters plus possibility to submit a pdf document. HERE.
The draft proposed list of new CMC materials and processes to be studied for possible inclusion into the EU Fertilising Products Regulation (Annex II) is circulated for comment and will be discussed at the Fertilisers Expert Group 15th April (input via members of this Group, inc. ESPP). The study, commissioned by the European Commission (DG GROW) to NMI Netherlands, will run for two years, and will assess which materials/process modifications could be justified to add into the EU Fertilising Products Regulation (based on the art. 42.1 criteria: significant potential for trade on the EU market, agronomic value, environmental and health safety). The study will consider all proposals submitted under the European Commission’s June 2022 stakeholder survey (ESPP eNews n°69). 207 stakeholders submitted to this survey, with 26 proposals considered out of scope (concerning other FPR annexes not CMCs) but some submissions including more than one relevant proposal. In this first draft report, NMI have regrouped the into proposals for:
(examples cited were included in ESPP proposals).
ESPP proposals which seem to be not included in this draft report (to be clarified) include: fish sludge (stated to be an animal by-product, whereas fish excreta seem to be excluded from the ABP Regulation 1069/2009 art. 2.2(k)), natural biomass collected as waste, digestate from biorefineries wastes, P leached from biochars, pre-processing of inputs to CMCs 13 and 14.
Following input at the 15th – 16th April EU Fertilisers Expert Group (input via FEG members only, e.g. ESPP), NMI indicate that they will launch a stakeholder consultation on the different regrouped materials / proposals to collect information on current legal status, current use as fertiliser (under national fertiliser regulations or otherwise), producers, potential market. This will enable assessment of the Fertilising Products Regulation (FPR) art. 42.1 criteria that the FPR can be amended if there is “potential to be the subject of significant trade on the internal market”.
For materials/processes where such potential is identified, NMI will further search literature and consult stakeholders on environmental and health safety and risks, and on agronomic effectiveness (an indicator for this being current use today), as also required in FPR art. 42.1
A final selection of relevant materials/processes, respecting art. 42.1, will then be made, and for these NMI will propose to the European Commission draft amendment texts to the FPR Annex II (CMCs) – planned timeline = before end 2025.
“Technical study to support the inclusion of new materials and processes under the Fertilising Products Regulation (FPR); Lot 2: Material and processes under the FPR. Inception report; Screening of proposals, workplan”, L. van Schöll, W.H. Riechelman, NMI (study performed for the Commission DG GROW F2 under GROW/2022/OP/0046), version March 2024 HERE.
Comments via members of the EU Fertilisers Expert Group (includes ESPP) – send comments ASAP to
A 2-page summary of ESPP’s SOFIE3 conference (3rd Summit of Organic & Organo-Mineral Fertiliser Industries in Europe) is published in Argus Media’s March/April 2024 Fertilizer Focus (11 000 readership). A full summary will be published soon in ESPP’s SCOPE Newsletter. Questions addressed include distribution costs, industry trend towards combining organic (recycled) nutrients with mineral fertilisers, potential for development of nutrient recycling from digestate and the corresponding need for roll-out of digestate processing (digestate production will increase with EU bio-methane policies), contribution of organic fertilisers to reducing nutrient losses and to soil health, potential for market growth or organic and organo-mineral fertilisers.
Fertilizer Focus, March/April 2024 (Argus Media) HERE.
A statistical study of business failures around Mar Menor, Murcia, South-East Spain, shows correlation of lagoon eutrophication to business failure of companies in some economic sectors. Mar Menor is a shallow saltwater lagoon of 135 km2, separated from the Mediterranean Sea by a narrow strip of land. It is a Red Natura and a Ramsar site, with strong tourism and agriculture activities. The lagoon suffered a major algal bloom and anoxia event in 2019. This study compared distance to eutrophied lagoon water (maximum water chlorophyll concentration within a certain radius of the company), distance to coast (of lagoon or of Mediterranean Sea) and rate of business failure (failure at some time in the four year period 2017-2020) for over 3200 businesses in ??? how many ??? municipalities < ??? km from the Mar Menor lagoon (how were these companies and municipalities chosen and why ?). All businesses were < 30 km ??? from the sea or from the lagoon. Overall business failure in this sample of companies was 11.6% (over the four years) compared to 10.6% average across Spain. Business failure was lower for companies situated near the sea or near the lagoon, but higher for companies near lagoon waters with high chlorophyll (algae). Despite the seeming probabilistic benefit of proximity to the coast/lagoon, a 1 gm higher Chl-a concentration within 600m of a company was correlated to +8.4% increase in probability of business failure for accommodation services, +11% for financial and real estate services, +14.4% for industrial and building activities and +9.5% for minor trade. Probability of business failure did not increase with eutrophication for agriculture and transport services. The author concludes that the results show that effective environmental protection to reduce eutrophication would bring benefits for businesses. They also note that agricultural businesses, being not apparently negatively impacted by eutrophication, have no incentive to reduce phosphorus and nitrogen losses.
“The impact of marine pollution on the probability of business failure: A case study of the Mar Menor lagoon”, M. Maté-Sanchez-Val & G. Aparicio-Serrano, J. Env. Management 332 (2023) 117381, DOI.
Review of data suggests that toxic algae events are not frequent in the Mediterranean Sea whereas algal blooms risk impacting tourism, including with mucilage, water discoloration and anoxia events. Of 140 potentially toxic algae species identified worldwide (UNESCO Moestrup 2009), 84 have been found in the Mediterranean (2 400 records since 1860). Increasing reports of toxic species and harmful algal blooms (HAB) over time are likely related to increasing awareness and monitoring. No trends are shown for increases in toxic algae. Impacts on human health are extremely rare, and on shellfish (toxin accumulation can lead to bans on harvesting) are uncommon except in some local coastal regions of Spain and France. Non-toxic problematic algae blooms, causing mucilage, water discoloration, anoxia (loss of water oxygen, killing fish and other organisms) or other aesthetic deteriorations detrimental to tourism also show no temporal trends for frequency or for bloom algal abundance. Blooms show unpredictable annual changes.
A summary of harmful algal blooms (HABs) in the Adriatic and Ionian regions of the Italian Mediterranean coast, 2012-2019, showed an increasing number of blooms over this period, but with variations. Blooms particularly occurred in coastal zones with multiple human pressures (physical modification of the coast, urban runoff, agricultural runoff)with the strongest link showing to coast modification. No toxic algae events were recorded in this study. See also studies on Adriatic eutrophication in ESPP eNews n°84.
“Toxic marine microalgae and noxious blooms in the Mediterranean Sea: A contribution to the Global HAB Status Report”, A. Zingone et al., Harmful Algae 102 (2021) 101843, DOI.
“Harmful algae and pressure-impact relationship: Noxious blooms and toxic microalgae occurrence from coastal waters of the Apulia region (Adriatic and Ionian Seas, Mediterranean)”, L. Roselli et al., Marine Environmental Research 183 (2023) 105791, DOI.
Webinar jointly organised by United Nations Environment Programme (UNEP), Food and Agriculture Organization (FAO) and International Fertilizer Association (IFA), February 2024, with over 260 people attending.
James Lomax, UNEP, opened the webinar underlining the pivotal role of soil heath as an ecological foundation of sustainable food systems. Soils are today facing an unprecedent crisis, with over 40% of Earth’s surface degraded, and topsoil being lost at a very fast annual rate. Healthy soils can reduce the need for fertiliser, regulate water and nutrient cycles, support plants and soil organisms, and filter, break down and immobilise potential pollutants. Prioritising soil health politically can help bridge ideological divides and galvanise joined up actions to achieve environmental agreements and SDGs. On this, UNEP is committed to create changes at the Country level, to interact with decisionmakers in the field of fertilisers to support the transformation of agribusiness, and to encourage farmer led innovations to tailor practices and incentives to meet needs and to scale and accelerate impact on the ground.
Achim Dobermann, IFA, presented global trends in phosphorus use efficiency, based on FAOSTAT Global Reference Database for cropland nutrient balances, a database of country-level budget estimates for nitrogen, phosphorus and potassium on cropland, covering 205 countries and territories, for the period from 1961 to 2020. Nutrient use efficiency is calculated as the ratio of outputs (nutrient removed by crops) divided by inputs (phosphorus in seed, fertilisers and manure). On a global perspective, both P inputs to cropland and P removal by crop have increased over the last 60 years (see picture). The average PUE is about 70%, (will probably reach 80% by 2040), and there is still a surplus of about 8 Mt P/y (of which 6 Mt P/y in Asia) ending up in soil, fresh water and marine ecosystems. On the regional level, P balances vary widely. China has made great progress in reducing its P surplus (ca 20 kg/ha in 2020, over 35 kg/ha in 2010) and increasing its PUE (around 60%) thanks to changes in policy, but Brazil and India are not. In Brazil, a period of intensification of agriculture resulted in a large and rising P surplus (ca 20 kg/ha in 2020), with a moderate/low PUE (ca 50%), and similarly in India the PUE has not changed over the last 20 years and has remained low (ca 50%), and the surplus is rising (ca 10 kg/ha in 2020). Soil P mining continues in much of sub-Saharan Africa, where P balance has been negative due to soil mining and soil health degenerating for most part of its modern history, requiring large increases in P inputs (fertilisers and recycled P) for greater food security and improving soil health. In the European Union (EU-27), P surpluses declined over the last 40 years benefitting from soil legacy-P and PUE has increased to an average 70%, with room to improve, although the situation is very different among countries and cropping systems. Finally, in the United States, P surpluses have declined over the last 40 years, reaching today a neutral-negative P range (although some local hotspots are present), and P use efficiency is now hovering about 100%.
Veronica Santoro, ESPP, and Ludwig Herman, ESPP and Proman, presented successful cases of P recycling technologies in Europe, including biosolids (treated sewage sludge) reuse in agriculture, use of P in wastewater to grow biomass (algae, duckweed), P-recovery from liquor streams (struvite precipitation), pyrolysis and hydrothermal carbonisation, P recovery from incineration ashes (to produce calcium phosphates, phosphoric acid, ...), and other technologies under development (vivianite precipitation, ion exchange, adsorption, ...). Theoretical P recycling potential is however very different from the actual recycling capacity. A study by the Joint Research Center of the European Commission identified a potential recovery of about 0.3 Mt P/y to mineral fertilisers, and about 0.3 Mt P/y to organic fertilising products, out of the 1.1 billion t of P consumed in Europe. The currently operating struvite plants in Europe are recovering about 3000 t of P, while the global capacity is about 5000 tons of P. The recovery potential from ash is instead about 50000 t of P with the projects that are currently underway in Europe, while the current recovery is of about 16000 t P. These technologies are still in the beginning of their development, making P recycling only regionally competitive and – apart from ash-derived products - hampered by the current low recovery rates and the fluctuating quality of products, but further development will lead to higher efficiencies and lower costs for implementation.
Vinisa Saynes Santillán, FAO, highlighted that nutrient imbalance is one of the major threats to soil health according to the “Status of the World’s Soil Resources” report by FAO (2015). More than 50% of the global P loss in agriculture is attributable to soil erosion, and the P exported in harvest is not replenished by organic or inorganic fertilisers leading to soil fertility loss. General recommendations to ameliorate nutrient deficiencies in soils and in crops include increasing soil organic matter, promoting crop diversification, use fertilisers in a balanced way, choose sustainable soil management practices according to the national and cultural reality. On the other hand, nutrient overuse and misuse also lead to negative effects, including greenhouse gas emissions, nutrient leaching, toxicity for plants and animals and impacts on soil biodiversity. Planetary boundaries research has shown that both global and regional boundaries for safe operating space of P are exceeded: a paradigm shift is therefore needed to move from current to sustainable agrifood systems, aiming at long-term productivity and minimal environment impact.
A final panel, moderated by Kim Haekoo, FAO, underlined the need of getting the political focus onto the importance of maintaining soil health and incentivise good practices, taking into account local differences and conditions. Many initiatives are now converging to this goal, but more needs to be done to implement the measures and develop capacity at local farm scale to increase nutrient use efficiency and soil health. Regarding the economic feasibility of P recycling, in the case of municipal wastes, implementing P recovery in a wastewater treatment plant has a cost but this is minimum in comparison to the whole wastewater treatment cost. In the case of agricultural residues, the integration of P recycling may result in more expensive food prices, and only technical advancements will allow to recycle nutrients at a lower cost.
The meeting was concluded by Ramesh Ramachandran, GPNM, who stressed the critical role of P management in enhancing soil health, optimising food production and mitigating nutrient losses, and by Patrick Heffer, IFA, who referred to the updated assessment of world phosphate rock reserves and resources, published by IFA in 2023. The study estimated global phosphate rock resources at over 300 billion t (expected to last at least 300 more years), but geologic depletion should not be the only focus: more work must be done on reducing losses during mining and processing of phosphate rock, but increasing recovery and recycling from waste streams and improving P use efficiency at the farm level are pivotal to increase the lifespan and our reliance on these reserves and resources.
“Management of phosphate fertilisers for feeding the world sustainably”, joint UNEP/FAO/IFA webinar 14th February 2024. Recording and materials are available here.
2 million US$ UNEP/GEF* funding for project to bring together global data on phosphorus losses to water and share knowledge on phosphorus (P) management and recycling, with a demonstration study focussed on Lake Villarrica (Mallalafquén), Araucanía Region, Chile. The project is implemented by the United Nations Environment Programmes and executed by the UK Centre for Ecology & Hydrology and the Chilean Ministry of the Environment.
The uPcycle launch webinar, 27th March 2024, introduced by Will Brownlie and Issy Lewis, UK CEH, and by Natalie Alem Zabalaga, UNEP, with over 60 participants, aimed to present the 2-year project to the global community of phosphorus scientists and stakeholders and to invite them to participate in bringing together databases and information sources on phosphorus and to establish a network for cooperation and exchange. This follows on from the “Our Phosphorus Future” report (coordinated by UK CEH, funded by the UK Research Council NERC and UNEP) and the Helsinki Declaration calling worldwide policymakers for more sustainable phosphorus management (launched at the 3rd European Sustainable Phosphorus Conference, 500 signatures).
* ENEP/GEF United Nations Environment Programme / Global Environment Facility https://www.unep.org/gef/
** ESPP questioned whether “net zero phosphorus” is meaningful: net zero climate emissions is (theoretically achievable) by compensating inevitable emissions by carbon sinks (CO2 reaction into minerals or burial, trees, soil carbon storage …). But how can inevitable phosphorus losses be compensated ?
uPcycle project website: https://www.upcyclelakes.org/
“Our Phosphorus Future” report 2022 https://www.opfglobal.com/
Phos4EU LIFE project will test vivianite separation using Kemira’s proprietary technology ViviMag® from sewage sludge at demonstration scale (9 m3/h, treating 50% of the wwtp's 400 000 p.e. capacity) at Nieuwveer wwtp, The Netherlands, In addition, replication projects will take place in Hoensbroek, The Netherlands and Burgos, Spain wwtps operated by Limburg Water Board, and Acciona respectively.. This follows trials with 1 m3/h pilots at Nieuwveer, at Schönebeck Germany (Veolia) and VCS Søndersø Denmark), see ESPP eNews n°82. The LIFE Phos4EU project (4.1 million € EU funding, 6/2023-5/2028), will further test the magnetic vivianite separation technology at near full scale in Nieuwveer and aims to recover up to 60% of total phosphorus in sewage sludge (with enhanced iron dosing). Aquaminerals and STOWA are also partners of the LIFE project and will look at possibilities to valorise the vivianite. The project is supported by Kemira, the owner of the ViviMag® technology as well as Royal HaskoningDHV, the development partner of ViviMag® in The Netherlands.
Brabantse Dela Water Board announcement on LinkedIn 12th March 2024.
LIFE Phos4EU link.
Atmospheric emissions were measured following two applications of N and organic carbon in two temperate grassland long-term field trial areas, after 23 years of zero / low / high phosphate fertilisation. The experiment was conducted on a long term phosphorus field trial site, at Johnstown Castle, Wexford, Ireland, on two contrasting soils both managed as permanent cut grassland. The site plots had received phosphorus rates of 0, 15, 45 kgP/ha/y since 1995. Grass was harvested monthly seven times per year. In Spring 2019, an experiment was conducted to look at the effect of varying phosphorus rates on N2O emissions under contrasting soil conditions. Plots were fertilised with nitrogen fertiliser (CAN = calcium ammonium nitrate) 40 kgN/ha/application and organic carbon at a rate of 6.3 kg C/day. The organic carbon (glucose, sodium acetate and methanol) was applied to simulate labile carbon in animal excreta. Cumulative carbon dioxide and nitrous oxide emission, soil properties, soil microbial biomass and glomalin related soil protein (GRSP) and plant biomass were measured over three months following the first N and C-org application. Cumulative soil N2O emissions were significantly higher in the zero-P plot (P application of previous two decades) compared to low or high-P in both soils (zero-P = 1.1 vs high P = 0.6 gN2O/m2) and were higher in the less well drained soil. CO2 emissions were in some cases higher with higher P-fertilisation, but not systematically. Based on GRSP, the authors suggest that the higher N2O emissions could result from increased AMF (arbuscular mycorrhizal fungi) development on roots in soils with low P, as these fungi help plants acquire carbon in P-limited soils (GRSP are related to AMF). This research is being expanded in the EJP Soil Iconica project to investigate the effect of phosphorus on carbon and nitrogen cycling in a number of long term trials across the world.
“Effect of contrasting phosphorus levels on nitrous oxide and carbon dioxide emissions from temperate grassland soils”, A. Gebremichael et al., Nature Scientific Reports, 2022, 12:2602, DOI.
See also: “The effect of carbon availability on N2O emissions is moderated by soil phosphorus”, R. O’Neill et al., Soil Biology and Biochemistry 142 (2020) 107726 DOI, summarised in ESPP SCOPE Newsletter n°137 special issue: Climate Change, Nutrients and Catchment Management.
Study of two sewage sludge incinerators reported no targeted PFAS in chimney gas discharged from a fluidised bed furnace, as widely used in Europe, but detectable short-chain fluorine compounds which are greenhouse gases (e.g. CF4, C2F6, C3F8). It is assumed that these carbon-fluoride compounds come from decomposition of PFAS* in combustion and not from combination of organic carbon with fluorine present in mineral forms in sewage sludge. The other sludge incinerator, a multiple hearth furnace, showed some chimney gas PFAS emissions (12 µmol). Both incinerators were equipped with wet gas scrubbing, and significant PFAS went to the scrubber water (320 – 340 µmol). No PFAS was reported in bottom ash in the fluidised bed incinerator (the ash in the other incinerator went to the scrubber water). Levels of targeted PFAS in input dewatered sewage sludge were 250 – 1 300 µmol (around 10 -50 ng/gDM), mostly PFOS*, with around half of the 20+ PFAS substances analysed being quantifiably detected. The authors noted that more recent incinerators should have additional flue gas treatment, including activated carbon (to abate mercury emissions), which could reduce PFAS and fluorinated substances in chimney offgas. The authors estimated greenhouse gas emissions (CO2 equivalent) of the carbon-fluorine compounds in the incinerators’ chimney gases at 0.5 – 2.8 % (fluidised bed furnace) or 0.5% - 4.5% (multiple hearth furnace), expressed as a total of GHG emissions from wastewater treatment for the population generating the input sewage sludge (based on the US EPA greenhouse gas inventory 2023).
* PFAS = perfluoroalkyl and polyfluoroalkyl substances, a wide family of several thousand different chemical substances. PFOS = perfluorooctane sulfonate is one chemical from this family (eight carbon chain = C8HF15O2).
“Fate of perfluoroalkyl and polyfluoroalkyl substances (PFAS) through two full-scale wastewater sludge incinerators”, L. Winchell et al., Water Environ Res. 2024;96:e11009 DOI.
SCOPE Newsletter: www.phosphorusplatform.eu/SCOPEnewsletter eNews newsletter: www.phosphorusplatform.eu/eNewshome
If you do not already receive ESPP’s SCOPE Newsletter and eNews (same emailing list), subscribe at www.phosphorusplatform.eu/subscribe
LinkedIn: https://www.linkedin.com/company/phosphorusplatform
Slideshare presentations: https://www.slideshare.net/phosphorusplatform - Twitter: @phosphorusESPP
YouTube https://www.youtube.com/user/phosphorusplatform
Please subscribe www.phosphorusplatform.eu/Subscribe
Link to www.phosphorusplatform.eu/eNews084
Download as PDF
Identifying policy tools to support market pull for recycled nutrients, which could achieve consensus across industry and users. Speakers from waste and water industries, fertiliser industries, circular economy policy experts. Proposals to be discussed will include targets, quotas, border tariffs, recycling credits, fiscal incentives, public purchasing, labelling … Industry and user positions can differ: The meeting aims to identify policies which could achieve consensus across recycled product producers (waste companies, recycling technology suppliers), industry and users (fertilisers industries, distributers, farmers), and to discuss ESPP proposals to submit to policy makers.
13th March Brussels & online. Registration is open www.phosphorusplatform.eu/nutrientevents2024
The proposed UWWTD revision text (art. 20) states: “The Commission is empowered to adopt delegated acts … setting out the minimum reuse and recycling rates for phosphorus and nitrogen”, see eNews n°80. This workshop will define ESPP proposals for these targets: How to define “reuse” and “recycling” ? What % rate? What criteria for products ? What rates for different sizes waste water treatment works or type of sewage treatment ? …
14th March: Brussels & online. Registration is open www.phosphorusplatform.eu/nutrientevents2024
To present your ideas in Brussels, 14th March, contact .
Over 100 online participants discussed evaluation of the Nitrates Directive and proposals for facilitating recycling of manure nutrients in Nitrate Vulnerable Zones. The aim was to develop ESPP input to the currently open EU public consultation to 8th March on the evaluation of the Nitrates Directive. The discussion showed a range of differing opinions of participants concerning the objectives of the Nitrates Directive, its implementation, changes needed, and concerning limits to use of manure-recovered nutrients:
Given the widely ranging opinions expressed, ESPP will:
Public consultation on evaluation of the EU Nitrates Directive (91/676/EEC). Open to 8th March 2024. HERE
ESPP proposed consultation input, proposals on manure-recycled nutrient: www.phosphorusplatform.eu/regulatory
TTBS is a Belgian company focused on phosphate technology and located in Wavre (Belgium), founded by Mohamed Takhim who has over 25 years’ experience as a phosphate industry process developer and industrial project manager. The objective of TTBS is to supply the phosphate market with efficient technical and business solutions. TTBS has developed a new patented process RubiPhos® for phosphate recovery, currently being pilot tested (12.5 kg/h input) with sewage sludge incineration ash, using digestion by hydrochloric or sulfuric acid. The company indicates that the technology can also be applied to other P-sources (vivianite, struvite, meal bones ashes, …). Together with its partners, TTBS can supply a complete plug-and-play production unit for phosphoric acid and/or its salt derivatives. TTBS can install its mobile P-recovery pilot onsite, to generate data for the design and supply of an industrial full-scale P-recovery unit.
TTBS - Takhim for Technology and Business Services - https://ttbs.be - Photo TTBS 2-container mobile pilot P-recovery unit.
Slibverwerking Noord-Brabant (SNB, an ESPP member) has announced a contract with startup SusPhos to design and plan phosphorus recovery from sewage sludge incineration ash at Moerdijk, The Netherlands. SNB is Europe’s largest sewage sludge mono-incinerator, burning 410 000 - 430 000 t/y of dewatered sewage sludge (> 90 000 t/y DM).The contract with SusPhos, following a European tender, aims to design a full-scale P-recovery from ash plant, establish the business plan and define cooperation with SusPhos within one year, allowing a decision on investment in a full-scale plant to then be taken. The objective is for the full-scale plant to be operational by 2027. SusPhos is presented as a robust process: sulphuric acid is reacted with the ash (similar to existing industry Single Super Phosphate type processes) then a proprietary solvent is used to extract ESPP eNews n°84 March 2024 Published by the European Sustainable Phosphorus Platform (ESPP) www.phosphorusplatform.eu Page 4 phosphoric acid. Purified phosphoric acid can then be stripped out of the solvent, or reacted to phosphate chemicals which can be separated from the solvent. The solvent is then recycled back to the process. The SusPhos solvent extraction leaves a residual mineral stream, containing gypsum (calcium sulphate from the sulphuric acid reaction), sand from silicates in ash, aluminium and iron. Heavy metals in the sewage sludge (copper, lead …) are 95% removed from the phosphoric acid and immobilised in the residual mineral stream. Susphos intends that this mineral stream can be valorised in e.g. building materials. This SusPhos technology has to date been tested at pilot scale: a 25 kg/day pilot plant has been operated for over 2 years using various ashes and other phosphate rich waste streams. SNB Managing Director, Silvester Bombeeck, says “'This all fits with our circular vision and mission to recover raw materials from sewage sludge”.
“SNB and SusPhos join forces to recover phosphate in a circular way”, 27th February 2024, HERE.
ICL Fertilizers (ESPP member), has launched the first fertiliser recovered from sewage sludge incineration ash to have obtained the CE-mark (EU Fertilising Products Regulation FPR certified). REACH declaration (EU chemicals regulation) and FPR Conformity Assessment (Module D1) were successfully completed in 2023. A first batch of over a thousand tonnes has been produced and commercialised at ICL’s existing phosphate rock processing plant in Amsterdam, using ash supplied by Netherlands sewage sludge incinerators, with further production planned. The product is based on acidulation then granulation of ash, with or without other nutrients.. ICL’s German production site in Ludwigshafen will also start this new process in coming months. ICL notes that the recycled fertiliser has specific characteristics different from synthetic mineral fertilisers, achieves EU FPR phosphorus crop availability criteria (>80% NAC solubility of P) and has shown good results in agronomic trials. The sewage sludge ash offers advantages over phosphate rock (no cadmium, no fluorine, no odour) but requires specific adaptations to the industrial chemistry, processes and handling, necessitating significant R&D and specific installations. Recycling is a strategic objective for ICL Fertilizers and the company now aims to progressively increase production.
https://www.icl-group.com/
Assessment by the Swedish National Veterinary Authority (SVA) concludes that pathogen risk is negligible in calcium phosphates recovered from sewage sludge incineration ash by the EasyMining Ash2Phos process (ESPP member). The study assessed the risk of pathogens (probability of presence of infectious pathogens) in the recycled phosphate product, based on risk in sewage sludge and reduction of pathogen infectivity in the different processing stages: sewage treatment, sludge incineration, Ash2Phos processing (which uses sequential precipitation: acid, alkali, filtration, lime). The SVA study concludes “There is a clear scientific basis to support that no bacteria, viruses or parasites can survive the incineration step, making sewage sludge ash a safe substrate in terms of these pathogens”. The study further concludes “The overall probability that phosphorus recovered from sewage sludge using the Ash2Phos process contains infectious prions was also assessed to be negligible”. This results from the negligible/very low prevalence of TSE (transmissible spongiform encephalitis) in Europe and evidence that both incineration and the Ash2Phos process steps can significantly reduce prion infectivity. Knowledge gaps are noted concerning prions in sewage/sludge, inactivation of prions in incineration and effects on prions of sequential acid/alkali. The study concludes overall that, assuming operating procedures are appropriately respected, that “the probability that phosphorus recovered from sewage sludge ashes using the Ash2Phos process contains infectious animal pathogens is assessed to be negligible”. Trials with chickens and pigs have shown that the Ash2Phos recovered phosphate is digestible, safe and performs as well as commercial animal feed phosphates (see ESPP eNews n°82).
“Negligible risk of pathogens in our recycled phosphate”, EasyMining 10th January 2024 here and SVA Risk Assessment Report “Assessment of the risk for pathogens in phosphorus recovered from sewage sludge ash”, Sweden National Veterinary Institute, SVA report 92:2023, ISSN 1654-7098 here.
A three-year trial at Norwegian University of Life Sciences (NMBU) shows that the N2-Applied process prevents methane formation without accentuating NOx or ammonia emissions. The study compared methane production in four closed 2 m3 tanks of manure over 70-80 days in three summers. Two tanks contained raw cattle manure (after screw press filtration) and two contained N2-Applied plasma treated manure (nitrogen enriched, NEO). The untreated manure generated 60 – 1500 gCH4/m3 (cumulative after 70 days), whereas the NEO treated manure showed slight net methane uptake (0 – 0.3 gCH4/m3). Laboratory studies of methane production from manure showed that neither the pH decrease, nor the increase in nitrate or nitrite, nor combination of these, could explain the complete inhibition of methane production achieved by the N2-Applied process, suggesting that it is the elimination of methanogenic bacteria by the plasma treatment which is the key factor.
“Complete elimination of methane formation in stored livestock manure using plasma technology”, M. Nyvold, P. Dörsch, 2023, DOI.
Consultation on EU Directive limiting emissions of ammonia, nitrogen oxides, sulphur dioxide, particulates and (non methane) volatile organic carbons (VOC). Open to 14th March. Organisations and individuals are invited to submit evidence and comments.
ESPP will underline that announced evaluation of this Directive should address recovery/recycling of nitrogen and sulphur (coherence with EU Circular Economy policy). ESPP suggests that this Directive is important in limiting emissions of the five targeted pollutant gases across Europe, and is necessary to achieve EU reduction targets, to avoid transboundary pollution and to ensure a level playing field across Europe for concerned activities. ESPP suggests that NERCD should, for coherence, also cover the climate gases N2O and methane, for which emissions can be related to NOx and NH3 emissions (e.g. livestock, digestates). Coherence should be ensured with revision of the Industrial Emissions Directive, which increases emphasis on material efficiency and reuse. NERCD emissions limits should ensure protection from eutrophication of sensitive terrestrial and aquatic ecosystems (Habitats Directive, Water Framework Directive, Nitrates Directive) and also impacts on soil (proposed Directive on Soil Monitoring and Resilience) and should be supported by EU agriculture policy (CAP farm funding and CAP National Action Plans) and Nitrates Directive NVZ Action Programmes.
EU public consultation “National Emission Reduction Commitments Directive – evaluation”, open to 14th March 2024, input 4000 characters plain text plus possibility to submit pdf documents here.
Consultation for evaluation of the Nitrates Directive. Open to 8th March. See ESPP eNews n°81 and also above.
“The protection of waters against pollution caused by nitrates from agricultural sources – Evaluation”, public consultation preparatory to evaluation of the EU Nitrates Directive (91/676/EEC) and Call for Evidence. Input requested from the public, farmers, stakeholders. Open to 8th March 2024. In all EU languages. HERE
European Commission call for signatures for a “Soil Manifesto”, recognising the need to protect and restore soils, current soil degradation, support the Soil R&D Mission objectives and commit to soil protection and awareness actions. The Soil Manifesto was launched by the European Commission and the European Regions Research and Innovation Network (ERRIN) in April 2023, has today over 2 600 signatures, and remains open for signatures. Signatories recognise the importance of soil for food and for environmental and social functions as “the basis of our well-being”, recognise that more than 60% of EU soils are in an unhealthy state and that pressure will increase with climate change, call to embed soil protection and restoration in all human activities, support the Soil R&D Mission goal to establish 100 test-demonstration sites (“living labs”, “lighthouses”) and commit to contribute to the protection and restoration of soil, to raise awareness and to enlarge the active community.
“The EU Mission Soil launches its Manifesto”, April 2023, link. “Update on the Mission Soil Manifesto” European Commission, 28 February 2024, here. Sign the Manifesto here.
The next EU Fertilisers Expert Group is fixed 15-16 April. ESPP will participate. So if you have points you consider should be taken into account in the FAQ regulation guidance or aspects to consider in the upcoming regulation evaluation: please email us ASAP (before end March latest). The existing FAQ is HERE (Frequently Asked Questions = in effect, FPR guidance). Please indicate interpretation or implementation questions which are NOT already addressed or are not resolved in this existing FAQ, if possible with real case examples. The evaluation of the FPR will be launched by the European Commission in coming months, as required in art. 49 of the Regulation, with the aim of identifying if certain aspects of the Regulatory text should be modified. Please indicate aspects of the Regulation which you suggest should be evaluated, other than points already specified in art. 49 (contaminants including cadmium and uranium, functioning of the internal market, conformity assessment, market surveillance, optional harmonisation) and other than specifications and materials in CMCs and biostimulants (studies already underway, see ESPP eNews n°81).
EU Fertilisers Expert Group documents (CIRCABC public) HERE.
Final text validated by Council specifies that EU “combined reuse and recycling rates” for P from sewage and sludge will be fixed within 3 years, and a feasibility study on N reuse and recovery will be engaged. The P reuse & recycling rates requirements are detailed in art. 20: these rates should take into account technical and economic viability, P content of sludge, other organic P sources on national markets, impacts on health and the environment. The N reuse & recycling study is specified in art. 30.This final text now goes to the European Parliament for endorsement and then legal verification before publication. The revised Directive also tightens sewage works discharge limits for P and N, requires that urban wastewater systems achieve “energy neutrality” (without increasing methane or nitrous oxide emissions, preamble 16), quaternary treatment (end-of-pipe removal of organic contaminants), extended producer responsibility to cover costs of this 4ry treatment (for pharmaceuticals and cosmetics only, extension to industrial chemicals to be studied), promotes water use, microplastic measurement methodology, “integrated urban wastewater management plans”, and specifies new definitions (e.g. of “sludge”). For details, see summary of the Commission’s initial proposal in ESPP eNews n°74. ESPP will provide a full summary of the final text when it is promulgated in the EU Official Journal.
ESPP will start work defining consensus proposals for defining these new “combined reuse and recycling rates” for phosphorus (from sewage and sewage sludge) at our meeting of 14th March (Brussels & online – register now): what % rates from different sewage works (size, configuration), definitions of “reuse” and “recycling”, requirements for recovered materials (quality, safety, plant P availability …).
Final validated compromise text for revised Urban Waste Water Treatment Directive 1st March 2024 HERE.
Working meeting, defining “combined reuse and recycling rates” for phosphorus from municipal waste water, 14th March (Brussels & online) http://www.phosphorusplatform.eu/nutrientevents2024
European Parliament plenary has validated the CRM final text, following ‘trilogue’ finalisation, and pending final formal validation by Council. “Phosphate rock” and “Phosphorus” (meaning P4 ) are in the Critical Raw Materials List, but not in the “Strategic” sub-list.
ESPP considers that this Act should support phosphorus stewardship and recycling by requiring monitoring, inciting national circularity measures and facilitating permitting of recycling projects. ESPP regrets that P4 is not included in the “Strategic” sub-list despite being essential for the specified “strategic” industry sectors (renewable energy, e.g. solar panels; batteries; data and electronics fire safety) and despite the EU’s 100% dependency on supply from three countries (China, Vietnam, Kazakhstan) – see joint industry declaration.
The finalised text adjusts the initial Commission proposal (see ESPP eNews n°74) by underlining materials efficiency and recycling of CRMs in art.1. The original text is also modified (art. 4.1) to specify that a CRM “at any stage of processing and when occurring as a by-product of other extraction, processing or recycling processes, be considered critical raw materials”. The interpretation of this for “Phosphate rock” could be interesting (!).
Many points of the Act address “Strategic” raw materials only (not all CRMs) – in particular definition of recycling objectives, possibilities for “Strategic Projects”. However, the following concern all CRMs:
The above are ESPP’s understanding of the amended text published by the European Parliament and remain to be confirmed when the final Act is published.
European Parliament “Consolidated legislative document” EP-PE_TC1-COD(2023)0079 12th December 2023
The third meeting (12th January 2024) of this informal UK group, led by Thames Water, discussed actions needed to develop markets for resources recovered from wastewater, with six UK water companies, waste/water engineering companies, the fertilisers industry, researchers and regulators.
User drivers for resource recovery were discussed. Leading food companies and fertiliser producers are looking to reduce carbon footprint, and recycling nutrients may contribute to this. Industry will drive interest in recovered resources as companies seek sustainable feedstocks to reduce supply chain greenhouse gas emissions, rather than agriculture itself. Discussions suggested that market forces alone are unlikely to deliver sufficiently rapid change: intervention and collaboration across the value chain are needed.
Joe Gilbertson, UK Agricultural Industries Confederation, explained that the UK is updating its (1991) fertilisers regulations, probably towards a matrix aligned with the EU Fertilising Products Regulation. Fertiliser blenders and companies manufacturing compound and liquid fertilisers in the UK can integrate recycled nutrient materials into their products. Recycled phosphates with low cadmium would be welcome. Sulphur is today needed in fertilisers, because no longer provided by atmospheric sulphur dioxide pollution (‘acid rain’). A challenge to uptake of recycled nutrient materials is perception of possible risks in wastes, with possible unknown contaminants and fear of contamination the food chain. Price is also important. She underlined that food processors, retailers and the public will determine demand for recycled nutrients, irrespective of fertiliser industry or government wishes.
Discussion underlined the need for dialogue between the fertiliser industry - distributors and waste - wastewater companies, on how to deliver nutrients in a form useful to industry, and on quality and safety. A key challenge is scale and logistics. Recycled nutrients are available in small, diffuse quantities. In the short term, an answer is to target recycled products to niche markets, but the longer aim should be to generalise nutrient recycling to deliver a significant proportion of fertiliser nutrient needs.
Nutrient platforms can enable dialogue, between waste and user industries, and with researchers. An important role of platforms is on policy and regulation. Other tools are needed to directly develop markets, ranging from industry joint ventures to take recycled materials to market (e.g. AquaMinerals Netherlands) to market matchmaking apps and websites.
The UK water industry Resource Recovery
Working Group is open to participation of all concerned companies and competent persons. Contact: Robert Naylor
DPP’s January 2024 ‘Political Memorandum’ calls for changes to German national fertiliser regulations, to ensure coherence and facilitate phosphorus recycling from sewage. This 2024 DPP Memorandum follows from, and updates, the DPP’s 2020 Memorandum (see ESPP eNews n°49). DPP reminds that Europe is largely dependent on imports for phosphorus, which is essential for food production, and increasingly for batteries and electromobility and calls for a national phosphorus circular economy strategy. German legislation (Sewage Sludge Ordinance 2017 AbfKlärV, see ESPP SCOPE Newsletter n°129) requires phosphorus recovery from sewage sludge from 2029 (except for small sewage works < 50 000 p.e. where sludge may be used in agriculture, and with a transitional delay to 2032 for sewage works < 100 000 p.e.). DPP requests adjustments of German regulations to enable implementation of this:
“Politikmemorandum zur Phosphorrückgewinnung 2023/2024 der Deutschen phosphor-Plattform DPP”, 31st January 2024 HERE.
This initiative, launched June 2022, aims to achieve the German regulatory P-recovery obligations with processes which explicitly remove contaminants and produce clean, marketable phosphorus products. The initiative currently brings together Gelsenwasser (waste and water utility employing 6 400 people - group), Ragn-Sells EasyMining (ESPP member), Remondis, MSE Mobile, Parforce, and several other sewage services, recycling and lime companies. The initiative promotes seven points for phosphorus recovery processes: achieve the P-recovery requirements of the German Sewage Sludge Ordinance AbfKlärV (see ESPP SCOPE Newsletter n°129), not accumulate pollutants to agriculture, remove pollutants present in input materials, produce clean and marketable phosphorus products of quality irrespective of composition and pollutant load of input material, separate and recover other materials where possible and not only phosphorus. The Federal Environment Agency (UBA) is also a member of the German Phosphorus Platform (DPP), as is the Swiss Federal Office for the Environment (BAFU) and several German Land (regional) authorities.
“Umweltbundesamt schließt sich der Initiative Sauberer Phosphor 2029 an” (the Federal Environment Agency joins the Clean Phosphorus 2029 Initiative)., Gelsenwasser, 1st March 2024, HERE and “Sauberer Phosphor”, seven point outline for P-recovery processes, EasyMining, 2 June 2022 HERE.
New initiative, led by FEFAC (animal feed industry federation), will bring industry organisations together to develop circularity in animal feed. Discussions are underway with industry federations in chemicals, animal by products and several food and bio-based materials processing sectors. Aims could include a mapping to identify and quantify secondary materials with potential as animal feed inputs (which are not currently being used), analysis of these resources (safety questions, nutrient digestibility, transport distances and logistics, food versus feed status, waste hierarchy, land use), supporting different sectoral organisations’ proposals for feed circularity within an overall strategy, possible definition of principles for feed circularity, analysis of regulatory and other obstacles, proposals to EU decision makers.
Industry federations and sectoral organisations wishing to engage with the proposed feed circularity platform should contact ESPP .
Policy Brief identifies three areas of regulatory barriers to circularity in the blue economy, including barriers to nutrient recycling from aquaculture sludge and by use of algae to treat wastewaters. The Policy Brief, from the Blue Bio Cofund (an initiative of the R&D platform JPI Oceans and the EU-funded R&D network Horizon2020 ERA-NET Cofund) accompanying the European Parliament event summarised below identifies:
BlueBio “Policy Brief On identified regulatory barriers to more circularity in the blue bioeconomy”, 5 pages, January 2024, https://bluebioeconomy.eu/wp-content/uploads/2024/01/BlueBio-policy-brief-Jan-2024.pdf
European Parliament meeting underlines the need to better identify and address obstacles to nutrient recycling from fish slurry, aquaculture and in algae production. The meeting had 43 participants in Brussels and 75 online and was organised by BlueBio Era-Net, with Clara Aguilera and Catherine Chabaud, MEPs.
Alex Obach, European Aquaculture Technology and Innovation Platform and FEFAC (animal feed industry federation), underlined that EU aquaculture is one of the most sustainable in the world. 40% of today’s fish meal used in aquaculture feed comes from marine food production co-products and over half of the ingredients used are co-products of marine, vegetable and animal origin (e.g. from maize or soja processing). However, 70% of aquaculture food products consumed in the EU are imported, resulting in a 25 billion € trade deficit. Regulation needs to ensure both safety and flexibility to allow innovation in the EU to support a sustainable and ambitious growth of the industry. Market policies and promotions campaigns of aquatic products are also essential. Furthermore, it should be stressed that the EU leads globally in terms of the development of aquaculture technology and innovation across the value chain, putting the EU at a competitive advantage in terms of RTDI transfer.
Anne Mette Baek, EFFOP (European Fishmeal and Oil Producers Federation), noted regulatory obstacles to producing food-grade products and processing animal by-products on the same site, which is however important for industry efficiency and integration. The 2009 Animal By-Product Regulation needs to be revisited to address the circular economy and food sustainability, whilst continuing to ensure safety, in today’s context.
Ingeborg Korme, BlueBio Era-Net, underlined that EU-funded R&D projects on aquaculture conclude that regulatory obstacles are important and are limiting innovation, investment and development of aquaculture in Europe, both concerning input of aquaculture products into applications such as animal feed, and concerning recycling of nutrients.
Ann-Cecilie Hansen, Norwegian Food Safety Authority. Norway uses around 2 million tonnes/year of fish feed for salmon aquaculture. The government has launched a mission into sustainable fish feed. Fish slurry from aquaculture, which contains mainly fish excrement and unconsumed feed, is authorised for use in fertilisers in Norway under national regulations, but is currently excluded from the EU Fertilising Products Regulation – but this is currently being studied. Challenges for recycling of fish sludge to agriculture include food-chain and environmental safety: heavy metals (zinc, copper, cadmium), organic contaminants (such as plant protection chemicals and pharmaceuticals), pathogens. Processing can ensure hygienisation and drying, which is important for transport from coastal to arable regions. Another possible route for valorisation is as food for insect farming, possibly for feed production, but this poses the risk of recirculating pathogens and contaminants. This route is currently excluded by feed regulations and requires more research into safety.
Oana Parvulescu, NUST Polytechnic Bucharest, summarised work on aquaculture and marine harvesting circularity. Fish processing wastes (heads, bones …) and aquaculture sludge (fish slurry) are both rich in nutrients and offer valuable potential as inputs to agriculture, as fertilisers and biostimulants. However, their use is currently blocked by EU regulations as fish excreta are not animal by-products under the Animal By-Product Regulation (2009/1069, art. 3.20), so are not considered in the EU Fertilising Products Regulation. There are also obstacles in the EU Organic Farming regulations.
Panagiotis Kougias, Hellenic Agriculture Organisation, noted the challenges facing use of food processing wastewaters to produce (micro)algae for applications such as cosmetics or human foods. Data is needed to prove safety. Barriers include the absence of regulatory standards, leading to lack of clarity and predictability for investment.
Kerstin Kuchta, Hamburg University of Technology, also indicated the complexity of the regulatory context. For example, if mixed algal biomass is cultivated, authorisation is difficult in product regulations which are based on individual algae species.
Efthalia Arvaniti, SUBMARINER Network, showed some Seamark project results concluding that the costs of obtaining approval for health and nutrition claims are an obstacle to marketing new algae-based products, highlighting that while the commercial communication of non-authorised health claims is not possible in the EU, this is allowed in US and Japan, where qualified health claims supported by a less demanding level of scientific evidence, are allowed to be communicated to the consumers. Furthermore, Seamark concluded that the EU has more demanding harmful contaminant limits than in equivalents in US or Japan. The Seamark report “Assessment of EU regulatory landscape in a global context” will be published in April at the Seamark project website here: https://seamark.eu
Lorella De La Cruz Iglesias, European Commission DG MARE (Directorate General for Maritime Affairs and Fisheries) explained that the Commission is working with stakeholders and industry to identify regulatory obstacles and bring the Circular Economy into MARE strategies. The Strategic Guidelines for EU Aquaculture adopted in 2021 and the EU Algae Initiative adopted in 2022 look into circularity approaches and cover many of the issues presented by participants in the event. She noted the importance to keep a connection/dialogue between researchers and innovators (especially those part of EU-funded projects) and policy makers in order to ensure, to the greatest extent possible, that EU policy and regulation is adaptable to future societal and technological developments, whilst continuing to ensure high levels of safety and consumer confidence. This is the approach followed in the implementation of both the EU Aquaculture Strategic Guidelines and the EU Algae Initiative.
Paolo Caricato, European Commission DG SANTE, also underlined the importance of cooperation and communication with stakeholders. The Commission fully understands that current EU regulations may pose barriers, but at present no Member States are pressing for changes. The political input of Member States is fundamental at this regard.
Round table conclusions noted that the EU is a world leader in research and innovation, and in aquaculture sustainability. There is need to improve coordination between researchers, industry and regulators, to promote implementation. R&D projects are today asked to deliver policy recommendations. A key question is to define policies to support market pull for the circular blue economy.
Catherine Chabaud, MEP, underlined the need for a Blue Deal within the Green Deal, and that algae are a key link between the marine economy and Green Deal (circular economy).
Clara Aguilera, MEP, indicated that implementation of the Green Deal is not yet today finished, and hopes that Green Deal objectives, including for marine and algae, will be taken forward under the new European Parliament and Commission after the June 2024 European elections.
JPI Oceans – Blue Bio event at the European Parliament and online, 30th January 2024 “Connecting the dots for a Circular Blue Bioeconomy: From Science to Policy and Regulatory solutions” https://www.jpi-oceans.eu/en/connecting-dots-circular-blue-bioeconomy-science-policy-and-regulatory-solutions and meeting report.
The forum underscores the central roles of nutrient use efficiency, decarbonisation of the fertilisers industry, and recycling of nutrients in Europe's path towards sustainable agriculture. The Forum on Plant Nutrition "Sustainable food production: From nutrient management to decarbonization” was hosted by MEP Peter Jahr and organised by Fertilizers Europe, and brought together policy makers, professionals and stakeholders in the food production value chain to discuss challenges of the agricultural and environmental sectors, with the ambition of guaranteeing food security, moving from current practices to a sustainable and decarbonised food production system.
Professor Wim de Vries, Wageningen University, shared main results from the study “Assessment of spatially explicit actual, required and critical nitrogen inputs in EU-27 agriculture”, funded by Fertilizers Europe, the International Fertilizer Association and the European Environmental Agency. The study arose from the interest in an accurate calculation of N boundaries, accounting for the spatial variation in the sensitivity of terrestrial and aquatic ecosystems and in climate, land use and soil properties at the EU level. Downscaling of planetary boundaries to regions, as often applied, in fact neglects this variation and flat rate reductions in N losses and inputs as in the ‘From Farm to Fork’ strategy appear inappropriate, since N concentrations in air and water vary depending on application rate, climate, crop and soil type. The study quantified and compared current inputs and losses of N with required N inputs for crop production and N inputs/losses in view of adverse environmental effects, with a focus on ammonia emissions to air and nitrate leaching and runoff to groundwater and surface water. The required Nitrogen Use Efficiency (NUE) at which the current or target crop yield can be reached by improved management was also quantified. Required overall reductions in ammonia emissions and N runoff at EU level to protect terrestrial and aquatic ecosystems were calculated as 38% and 50%, respectively, the latter value being equal to the mentioned reduction in nutrient losses by the Green Deal’s Farm to Fork strategy. At current NUE, the required reduction in N inputs to protect terrestrial and aquatic ecosystems, is 31% and 43%, respectively. Critical N inputs are most strongly exceeded in regions with high livestock density, such as Ireland, the Netherlands, Belgium, Luxembourg, Brittany in France and the Po valley in Italy. At increased NUE, a given crop yield can be obtained with less N input, while the critical N input increases since a lower fraction of N is lost to the environment. The NUE increase that is required to attain actual or target crop yields at acceptable N losses varies strongly, but a mean +22% of variation was calculated. Prof. de Vries then highlighted the need to develop region-specific mitigation policies based on regional information on critical N inputs and their exceedances with related environmental and health impacts, and wrapped up by linking sustainable food production to enhanced waste and nutrient recycling, decreased food waste and the adoption of efficient practices to fertilization and farm management, notably the 4R principle: right product, rate, time, and place.
A panel discussed the link between sustainable nutrient management and food security. Mónica Andrés Enríquez, Yara International, highlighted how the fertiliser industry is committed to transform the food value chain, through increased nutrient use efficiency, decarbonisation of fertilisers production and recycling of nutrients (as a solution to food waste as well). This is possible only through a collective effort, including fertilisers producers, food companies, regulators, consumers and farmers. In fact, to shift from “grey” (obtained from fossil fuels) to “green” fertilisers (obtained with renewable energy) and to reduce the carbon footprint of fertilisers of between 80 and 90%. The whole value chain needs to be involved, as this shift will be costly, requiring huge investments. Farmers are pivotal in this change, but they must be supported with digital tools to control nutrients and convinced by business cases for green fertiliser.
Max Schulman, Central Union of Agricultural Producers and Forest Owners (MTK), highlighted the important role of advisors, including farmers’ associations, local cooperatives, fertilisers manufacturers, in helping farmers selecting the right type of fertiliser and use management according to soil type, crop variety and required quality of the product. He agreed that communication within the value chain is pivotal, as well as giving farmers the proper time to put in place the required changes but at the same time provide long term certainty that the targets will remain consistent and will not change in the short term.
Fabien Santini, European Commission, DG Agriculture, specified that the EU Fertilising Products Regulation introduced the possibility to create a single market for organic fertilisers, to increase the possibility of recycling nutrients from manure and waste streams and to facilitate the movement and reuse of organic fertilisers in excess in one region. He announced that a report on the implementation of the CAP strategic plans is soon to be published, reporting Member States’ interventions related to nutrient management. He reiterated that communication and clarity are crucial for innovation and for implementation of change.
Peter Jahr, MEP, concluded the meeting remarking that a combination of policy and technology solutions are needed to guarantee availability of fertilisers in Europe, and highlighted how farmers are the most important part of the solution, as long as they are advised in the correct way.
“Assessment of spatially explicit actual, required and critical nitrogen inputs in EU-27 agriculture” de Wries et al. (2022) DOI
“Forum on plant nutrition: from food security to carbon farming”, online, hosted by Peter Jahr, Member of the European Parliament, 9th February 2024, HERE.
Review summarises changes in P and N discharges and concentrations in the Po river and the Adriatic coastal Mediterranean Sea, showing reduced algal blooms with lower P inputs, higher N/P ratios and impacts on fisheries. The Adriatic coastal Mediterranean is shallow with limited water exchange and high nutrient-rich river input. The Adriatic receives one third of freshwater flowing into the Mediterranean, of which over 50% from the Po river, which has a population of 16 million (including Milan, Turin) and is agriculturally intensive. These nutrient inputs make the Northern Adriatic one of the most productive fisheries of the Mediterranean, but also susceptible to eutrophication. Phosphorus inputs to the Adriatic were reduced from 1985 with the Italy ban on detergent phosphates (1988). Phosphorus inputs continued to reduce through to the 2020’s (ESPP comment: probably because of improved sewage treatment: over 70% of phosphorus and 60% of nitrogen are removed from Lombardy’s sewage SCOPE Newsletter 124) but this trend was not observed for nitrogen. Over past decades, climate change has also led to reductions in nutrient levels in the Adriatic, with lower rainfall resulting in lower land nutrient runoff, and lower river inflow to the coastal Mediterranean resulting in more mixing with low-nutrient waters from the central Adriatic. Algal growth fell, as shown by chlorophyll-a data 1978-2020. This led to lower fish populations and consequent overfishing. The authors note that questions are raised by the continuing high N levels in river input (largely from agriculture), leading to increased N/P ratios in the Adriatic, and that there is a need to further reduce nutrient losses to the Adriatic, to monitor impacts of climate change and to move towards more sustainable fisheries and aquaculture.
Cozzi et al. (2020), studying the Gulf of Trieste, Italian Mediterranean coast, showed similar results, with decreasing phosphorus inputs resulting in decreasing algal development through to around 2010, but then recurrence of algal blooms and changes in seasonal algal growth patterns as a result of climatic changes modifying water temperature, winds (water mixing).
Rubini et al. (2021), analysed occurrences of toxic microalgae in the Adriatic, releasing yessotoxins which can accumulate in shellfish, leading to stoppage of harvesting to avoid human health risks. These releases are considered to be linked to climate change (increasing water temperatures, changes in river freshwater discharge or in marine water mixing).
Soana et al. (2024) recently analysed the long-term trends (1992–2020) of N and P export from the Po river basin to the Adriatic sea, investigating annual and seasonal patterns and their relationship with water temperature and precipitation patterns. Diffuse plus point sources in the basin did not significantly decrease over this period, yet a marked decrease (-20%) in N-total export, mostly as nitrate, was recorded in the last decade compared to the 1990s. This is likely related to the water temperature warming, especially during summer (+0.13°C/year) and autumn (+0.16°C/year)), to the increased number of warm days (+70%–80%), and to the persistence of low flow periods, that may enhance the rates of microbial processes and sustain favourable conditions for the denitrification and nitrate removal. On the other hand, despite a significant reduction in both agricultural diffuse P sources in the basin (manure, synthetic fertiliser) and point P sources (sewage works, but these are c. 20x lower than agriculture), the annual export of P-total in the river displayed a high inter-annual variability, and no significant downward trend. In large turbid rivers, such as the Po, P cycling is less sensitive to temperature warming. The only negative relationship found between water temperature and soluble P loads in the river final section was observed in summer and attributed to increased P uptake by phytoplankton.
“The Role of Nitrogen and Phosphorus in Eutrophication of the Northern Adriatic Sea: History and Future Scenarios”, M. Marini & F. Grilli, Appl. Sci. 2023, 13, 9267, DOI.
“Climatic and Anthropogenic Impacts on Environmental Conditions and Phytoplankton Community in the Gulf of Trieste (Northern Adriatic Sea)”, S. Cozzi et al., Water 2020, 12, 2652, DOI.
“New Trends in the Occurrence of Yessotoxins in the Northwestern Adriatic Sea”, S. Rubini et al., Toxins 2021, 13, 634. DOI.
“Climate change impacts on eutrophication in the Po River (Italy): temperature-mediated reduction in nitrogen export but no effect on phosphorus”, E. Soana et al., J. Environ. Sci. 2024, 143, DOI.
Modelling suggests that climate change will multiply water in the Júcar basin with poor quality status by x4, requiring a 50% reduction in P losses. The Júcar basin, 43 km2, drains into the Mediterranean and includes the cities of Valencia, Albacete and Ribera Alta. Two models (PATRICAL, RREA) were applied with climate scenario RCP8.5 for period to 2100. Surface water area impacted by nitrates is estimated to increase by x1.3 as a result of climate change by 2100. Other Mediterranean studies have estimated decreases in nitrate loadings with climate change (Serpa et al., 2017; Buonocore et al., 2021). Nitrates runoff from agriculture will be reduced with lower precipitation and run off and with increased denitrification. Water area impacted by ammonia is estimated to increase by x1.9 and that by BOD (biological oxygen demand) and by phosphorus by x4. Median ammonium and phosphorus concentrations in the river and tributaries may double in low flow periods, because lower precipitation leads to reduced dilution of point sources and agricultural runoff. To maintain current water quality status, reductions of -25% for nitrates and -50% for ammonia, BOD and phosphorus will be required.
“Effect of climate change on the water quality of Mediterranean rivers and alternatives to improve its status”, D. Doradao-Guerra et al., J. Environmental Management 348 (2023) 119069 DOI.
6-year field trial in central Spain extensive ‘dehesa’ agri-ecosystem shows that N or P+N fertilisation improves WUE and prevents carbon loss, with P+N showing the best WUE and lowest evaporation. The site studied, at Madajas de Tiétar, has 20-25 trees/ha, grass and extensive grazing (<0.3 cattle/ha). Annual rainfall was 440 – 970 mm/y (85% October – April). Three c. 20 ha plots received N fertiliser (100 kgN/ha/y) in 2015 and 2016, P+N fertiliser (50 kgP/ha/y) or no fertiliser (control), and were then monitored for further four years. Data was collected from three eddy covariance towers (one in each plot), CO2 emissions, airborne spectral measurements, meteorological and Landsat data, vegetation sampling. The two plots receiving N fertilisation showed 40% increased leaf area index (LAI) in spring, resulting in reduced evaporation. Evapotranspiration increased in the N-only fertilised plot, but was similar to the control in the P+N plot. The higher leaf water loss with N-only fertilisation may be due to increased root development or root activity required for uptake of limited P. In both fertilised plots (N, P+N), annual net ecosystem CO2 loss was reduced to net zero (from c. 75 gC/m2/y in control). The best water use efficiency was achieved in the P+N fertilised plot.
“How Nitrogen and Phosphorus Availability Change Water Use Efficiency in a Mediterranean Savanna Ecosystem”, T. El-Madany et al., J. Geophysical Research Biogeosciences, 126, 2021, e2020JG006005, DOI.
SCOPE Newsletter: www.phosphorusplatform.eu/SCOPEnewsletter eNews newsletter: www.phosphorusplatform.eu/eNewshome
If you do not already receive ESPP’s SCOPE Newsletter and eNews (same emailing list), subscribe at www.phosphorusplatform.eu/subscribe
LinkedIn: https://www.linkedin.com/company/phosphorusplatform
Slideshare presentations: https://www.slideshare.net/phosphorusplatform - Twitter: @phosphorusESPP
YouTube https://www.youtube.com/user/phosphorusplatform
Please subscribe www.phosphorusplatform.eu/Subscribe
Link to www.phosphorusplatform.eu/eNews083
Download as PDF
Identifying policy tools to support market pull for recycled nutrients, which could achieve consensus across industry and users. Speakers from waste and water industries, fertiliser industries, circular economy policy experts. Proposals to be discussed will include targets, quotas, border tariffs, recycling credits, fiscal incentives, public purchasing, labelling … Industry and user positions can differ: The meeting aims to identify policies which could achieve consensus across recycled product producers (waste companies, recycling technology suppliers), industry and users (fertilisers industries, distributers, farmers), and to discuss ESPP proposals to submit to policy makers.
13th March Brussels & online. Registration is open www.phosphorusplatform.eu/nutrientevents2024
The proposed UWWTD revision text (art. 20) states: “The Commission is empowered to adopt delegated acts … setting out the minimum reuse and recycling rates for phosphorus and nitrogen”, see eNews n°80. This workshop will define ESPP proposals for these targets: How to define “reuse” and “recycling” ? What % rate? What criteria for products ? What rates for different sizes waste water treatment works or type of sewage treatment ? …
14th March: Brussels & online. Registration is open www.phosphorusplatform.eu/nutrientevents2024
Your input and proposals are welcome: present your ideas on these questions (and why) in Brussels, 14th March. We still have a few slots available. Please send short outlines of proposals for pitches to as soon as possible to .
Toopi Organics is a french start-up, incorporated in 2019, processing separately collected human urine and valorising it in agriculture. Toopi Organics aims to save water and nutrient resources while offering green alternative solutions for farmers. Toopi collects urine at source from waterless urinals and uses it as a growing medium to perform submerged liquid fermentation, producing organic urine-based microbial biostimulants to increase nutrient use efficiency and reduce mineral fertilisers for crops. More information in ESPP eNews n°82.
European Parliament and Council have announced agreement on the Urban Waste Water Treatment Directive (UWWTD) revision, probably enabling adoption before the June 2024 European elections. The agreement now must go to Parliament and Council environment committees for endorsement, then formal plenary vote by both institutions. The coregulators underline that the 1991 UWWTD has been highly effective in reducing water pollution because of the simplicity of its requirements. Announced points of the political agreement include obligations of secondary wastewater treatment for all agglomerations > 1 000 p.e. by 2039 and of tertiary (N and P removal) and quaternary treatment (organic micropollutants) for all large agglomerations and, in areas with identified risk, down to 10 000 p.e. by 2045. Energy neutrality targets for waste water treatment plants will be required by 2045. Other measures agreed in principle include monitoring of microplastics, antibacterial resistance, Covid virus tracers and PFAS, polluter pays (for quaternary treatment, applicable to pharmaceuticals and cosmetics industries), promoting treated sewage water reuse. The communications do not specify what agreement is reached on nutrient recycling. The European Commission proposal (art. 20) indicated that the Commission should be empowered to set “minimum reuse and recycling rates for phosphorus and nitrogen” see eNews n°80. Both Parliament and Council proposed amendments to conditions for this, but both retained the principle of phosphorus reuse and recycling targets, whereas Council proposed to delete nitrogen from this article. The full text of the agreement is not yet published.
29th January 2024.
European Commission communication: More thorough and cost-effective urban wastewater management (europa.eu)
Council: Urban wastewater: Council and Parliament reach a deal on new rules for more efficient treatment and monitoring
European Parliament: Deal on more efficient treatment and reuse of urban wastewater
Council and Parliament have reached agreement, but Fertilizers Europe considers that the proposal will not significantly reduce complexity of on-package labels and of packaging wastage required every time a label needs to be modified. Digital labelling enables to include additional information on product use and characteristics, which is not possible or not legible on a physical label. It also allows different types of user (blender, distributor, farmer, public consumer …) to access different information according to their requirements. The agreed rules (not yet published) will not allow digital-only labelling for any packaging other than bulk, with key information continuing to be required on physical labelling on packaged products. Fertilizers Europe suggests that digital-only labelling should also be an option for professional and industrial end-users. The industry federation indicates that nearly 2 million fertiliser packages (only taking into account packages above 500kg) have to be discarded every year in Europe because of physical labelling modifications.
“Commission welcomes the political agreement on the voluntary digital labelling of EU fertilising products”, European Commission 23 January 2024 here.
The European Commission has published the updated BAT for “for slaughterhouses, animal by-products and/or edible co-products industries”, including struvite recovery as a possible BAT (Best Available Technology, under the EU Industrial Emissions Directive), replacing the previous 2015 BAT BREF. Relevant to nutrients, the adopted BAT includes measurement of wastewater phosphorus and nitrogen, including mass flows (but not calculation of mass flows in incoming animals and output food products or animal by-products), P and N removal from wastewater, and now includes struvite precipitation from waste waters with > 50 mgP/l (indicative concentration):
European Commission decision 2023/2749 “establishing the best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council on industrial emissions, for slaughterhouses, animal by-products and/or edible co-products industries” (32 pages), 18/12/2023 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ%3AL_202302749
Yara summarise the sustainability benefits and challenges of combining mineral fertilisers with organic materials for optimal agronomic and environmental benefits and developments engaged by the company. 65-year field trials at Yara’s Hanninghof research centre, Dülmen, Germany, show that combining organic fertiliser (farmyard manure) and mineral fertiliser (potato/cereal rotation) resulted in increased soil organic carbon, increased water use efficiency (3x improvement) and highest yield and profitability. Yara is developing organo-mineral fertilisers (OMFs) in order to deliver such benefits to farmers, and to enable optimal recycling of local organic nutrient resources. Yara has carried out greenhouse tests and is now doing field trials, looking both at efficiency for crops, impacts on soil and risks of nitrogen losses (possible ammonia or N2O emissions to air). OMFs are delivered as pellets to farmers, to facilitate handling and enable spreading (which is important for yield). Local transformation routes are needed as organic secondary resources are scattered locally and transport would be inefficient and expensive. Nitrogen uptake alone does not explain increased yields from OMFs, so these are considered to result from other benefits such as soil organic carbon (40 – 80 % of organic carbon applied is shown to be stored in soil in the rhizosphere) and soil microorganism activation. Application timing must however be adjusted to adapt nutrient release to crop needs and so minimise nutrient losses.
“Optimising crop production by combining organic-based and mineral fertilizer sources: Agronomic performance, soil and environmental considerations”, A. Becerra, Yara, at the IFS (International Fertiliser Society) annual conference, Cambridge, UK, 6-7 December 2023. IFS events here.
The 2024 IFS annual conference will take place 11-13 December 2024, Cambridge, UK.
“65 years-long research concludes: Mineral fertilizer supports sustainable agriculture”, Yara press release, 5th September 2023.and book chapter “Effect of Balanced and Integrated Crop Nutrition on Sustainable Crop Production in a Classical Long-Term Trial”, M. Jate, J. Lammel, in “Sustainable Crop Production - Recent Advances” 2022 here.
Study presents tests to convert sewage sludge and recovered carbon dioxide (CCUS) to ash and syngas, with a 2-hour test run of a 220 litre interior volume, 15 kg/h, 1200°C thermal plasma reactor. The reactor used an argon-water stabilised DC plasma torch (max 150 kWe) with rotating copper disc anode. The torch generated a plasma at around 18 000 °C at its outlet, resulting in temperature of c. 1200°C measured on the reactor walls. The feedstock for this reactor was dried anaerobically digested sludge (c. 6% water) from a Czech municipal sewage treatment plant (15 kg/h), as was CO2 (c. 1200 l/h): the objective was to capture industrial carbon dioxide and convert it to syngas by reacting with sewage sludge (CCUS = carbon capture utilisation stockage). The cold gas efficiency (energy recovered in syngas / electric energy consumed by plasma torch plus energy potential in sewage sludge) was c. 35% (the authors suggest this could be increased to nearly 50% by thermal insulation of the reactor / heat recycling). This does not take into account energy used upstream for drying of the sewage sludge. Very low char production meant that carbon conversion (carbon to syngas) was over 95%. The authors suggest that an advantage of this route for sewage sludge treatment is that phosphorus in the reactor will be volatilised to elemental phosphorus (high temperature, reducing conditions, silicates in sewage sludge). In these trials, the phosphorus was found in the offgas filter (particles) and retained in the reactor.
“Integration of thermal plasma with CCUS to valorize sewage sludge”, V. Sikarwar et al., Energy 288 (2024) 129896, DOI.
Field trials show increased soil P, but also increased soil cadmium, uranium, chromium, vanadium and arsenic, in topsoil, after 45 years of repeated fertilizer application. Results are based on soil samples from five plots with different levels of P fertiliser application from 1966 to 2022 (zero control up to 72 kgP/ha, that is up to 3 – 4 x crop requirements) at Tidewater Research Station, North Carolina, USA. P content of topsoil was strongly correlated to soil concentrations of Cd, U, Cr, V and As, all of which were present in the applied fertilisers at levels above soil background concentrations (23 mgCd/kg, 163 mgU/kg, 179 mgV/kg, 132mgCr/kg). The correlations shown include the plots with repeated high excess fertiliser application, it is unclear to what extent the results are significant for plots with fertiliser applied according to agronomic recommendations. The paper does not show data for the relation fertiliser application – soil meta(loids), but shows correlations soil P – soil metl(loids). Potassium fertiliser, which was also applied, had low levels of these metals. The metal(loid) increases were mostly found only in topsoil, not in deeper soils. The authors note that the increase in plant available P (Mehlich-III) may cause mobilisation of metals already present in soil, but conclude that the data indicate that the rate of P-fertiliser application is correlated to occurrence of the metal(loid)s in topsoil. The possible significance of the changes in heavy metal levels was not analysed and possible increased uptake of the metal(loid)s by crops was not assessed.
“Evidence for the accumulation of toxic metal(loid)s in agricultural soils impacted from long-term application of phosphate fertilizer”, J. Hu et al., Sci. Total Environment 907 (2024) 167863 DOI.
Modelling suggests average soil P accumulation of 0.11 kgP/ha/y in arable soil (total 190 ktP/y),2010-2019, somewhat higher than 130 ktP/y in a previous JRC study (Panagos et al. 2023, see ESPP eNews n°73), with high regional variations. This represents c.8% of applied phosphorus (6.5 kgP/y from manure and 6.4 kgP/ha/y from mineral fertilisers, other organic P inputs not considered). Net P losses by soil erosion (minus deposition) are estimated as 0.25 kgP/ha/y, that is more than twice soil P accumulation. The study uses the DayCent model to estimate daily dynamics of C, N, P and S between plants, soil and air, at a 1 km2-grid level, considering six different soil P pools: POrg) and five mineral P pools: Plabile, Psorbed, Pstrongly sorbed, Pparent, and Poccluded. Model inputs included LUCAS soil and water data, CLC land-use, meteorological data, CORDEX climate project data, Eurostat (crops, irrigation, mineral fertiliser inputs), FAO livestock distribution, SAGE agronomy parameters and literature numbers for P excretion, soil P partition, etc. The authors model consequences of management scenarios to 2050, concluding that increased use of N-fixing cover crops can reduce the P-surplus by increasing crop productivity (N availability, whilst also reducing erosion losses. The authors note that results for national P budgets from this modelling study correspond for some countries to those from the empirical Panagos 2023 study or to national statistics, but diverge for other countries.
“Assessing the phosphorus cycle in European agricultural soils: Looking beyond current national phosphorus budgets”, A. Muntwyler et al., Sci. Total Environment 906 (2024) 167143 DOI.
Lab tests looked at use of ferrous sulphate to precipitate soluble phosphorus from mobile phone metal shell polishing wastewater, achieving over 95% P-precipitation and a precipitate with c. 25% vivianite, 75 % iron phosphate colloid. The industrial process water contains over 200 mgP/l and had pH <3. Optimal conditions for P-precipitation showed to be c. 1.5:1 molar ratio Fe:P and pH around 7. At these conditions, the iron phosphate precipitated contained <25% vivianite, and was mostly colloidal iron phosphate, that is lower vivianite content than expected from literature and modelling. Given the low proportion of vivianite in the precipitate and that no evidence is provided to suggest that the precipitated phosphate material could be recycled, the title of the paper seems to misleading.
“Efficient removal and recovery of phosphorus from industrial wastewater in the form of vivianite”, Y. Zhang et al., Environmental Research 228 (2023) 115848 DOI.
Analysis of data for France suggests that only c. 10% of N from human excreta is recycled (despite 3/4 of sewage going to agriculture), half is lost to the atmosphere and 40% goes to surface and ground water. The study analyses data from all of France’s sewage treatment plants (over a decade), autonomous sewage treatment, population, diet, nitrogen in human faeces and urine. Nitrogen removal in sewage works varied from around 60 to 85%, with higher removal rates in Nitrates Directive “Nitrate Vulnerable Zones” and in larger sewage works. No data is available for nitrogen losses to air in sewage works, but nitrification – denitrification converts much of inflow N to N2 lost to air. The authors estimate around 10% N losses to water upstream of sewage works. Of the N arriving at sewage works, around 50% is lost to air in sewage works, 40% to surface waters and only around 10% recycled to land. In autonomous sewage treatment systems, losses to underground water are estimated to be around 3/4. N in urine represents c. 15% of French mineral N fertiliser consumption (0.3 vs 2 MtN/y) and the authors estimate that recycling N from human sewage, via separate collection of urine, could cover around 10% of France’s protein production with current diets, or up to around 30% if diets moved away from meat to plant-based.
“Fate of nitrogen in French human excreta: current waste and agronomic opportunities for the future, T. Starck et al., 2024, Nitrogen in agro-food systems and the environment, 912, pp.168978, DOI.
US Sustainable Phosphorus Alliance webinar with R. Cusick (University of Illinois) shows the significant potential and environmental benefits of for phosphorus recovery from maize processing to biofuels. The US harvests nearly 1.5 Mt/y of maize for biofuel (bioethanol) production, that is around 1/3 of US maize production. The maize contains phosphorus which is not wanted in the biofuel (in combustion it would generate corrosive phosphoric acid) and ends up in distillers’ grains which mostly go to animal feed. High P in feed is transferred to manure, and can contribute to eutrophication of water bodies. Maize processing (CBs = corn biorefineries) generate liquor streams with higher P concentrations than in wastewater or manure, they are large installations, mainly clustered in US Mid-West States, where there is high demand for fertilisers. Most of the phosphorus in the input maize is in phytate, but the processing partly breaks this down and mineralises or solubilises the phosphorus, making it available for P-recovery processes. Total P in distillers’ grains in the US is estimated to be around 230,000 t/y, that is around 13% of P mineral fertiliser consumption in the US. In bioethanol producing states such as Iowa, that percentage can be as high as 37% mineral P fertilizer consuption. Total P-recovery potential from maize biofuel production (corn biorefineries) in the US is estimated to be around twice that from municipal wastewater (as struvite), with the median recovery potential for corn biorefineries estimated to be three orders of magnitude greater than a wastewater treatment plants (1,000 vs 0.5 t/facility).
“Mapping the National Phosphorus Recovery Potential from Centralized Wastewater and Corn Ethanol Infrastructure”, K. Ruffatto et al., Environ. Sci. Technol. 2022, 56, 12, 8691–8701 DOI.
“Modeling National Embedded Phosphorus Flows of Corn Ethanol Distillers’ Grains to Elucidate Nutrient Reduction Opportunities”, K. Ruffatto et al., Environ. Sci. Technol. 2023, 57, 38, 14429–14441 DOI.
“Big Opportunity for Phosphorus Recovery from Bioethanol Processes”, Sustainable Phosphorus Alliance “Science Now” webinar, 21 minutes, date November 8, 2023, available online here.
Lab trials (100 ml, 15 days) showed production of ammonium sulphate by Acidithiobacillus thiooxidans from liquid fraction of dairy manure digestate, generating a material showed 90% ammonium sulphate content after drying @ 60°C. The manure digestate was lab centrifuged, resulting in zero measured solids, 100 mM ammonia, 0.1 mMP and 10 mM K. Acidithiobacillus thiooxidans was stepwise acclimatised to ammonia at 400 mM-N, then incubated with the digestate liquor and with elemental sulphur. The bacteria reduced the digestate pH from c. 9 to 2 over 15 days. This produced c. 6g of ammonium sulphate (after drying), so in 100 ml of digestate/inoculum that is 6% ammonium sulphate solution (1.2 %N) with 10 % impurities.
“Biorecovery of ammonium from manure digestate by Acidithiobacillus thiooxidans”, B. Jalili et al., Chem Eng J Chemical Engineering Journal 466 (2023) 143094 DOI.
SCOPE Newsletter: www.phosphorusplatform.eu/SCOPEnewsletter eNews newsletter: www.phosphorusplatform.eu/eNewshome
If you do not already receive ESPP’s SCOPE Newsletter and eNews (same emailing list), subscribe at www.phosphorusplatform.eu/subscribe
LinkedIn: https://www.linkedin.com/company/phosphorusplatform
Slideshare presentations: https://www.slideshare.net/phosphorusplatform - Twitter: @phosphorusESPP
YouTube https://www.youtube.com/user/phosphorusplatform
Political agreement between Council and Parliament adds only aluminium to the “Strategic” materials list. Phosphorus is not added to the ‘Strategic’ materials list but remains on the ‘Critical’ raw materials list. The ‘Strategic’ list is 16 raw materials identified as supply-critical for ‘strategic technologies’ defined as “green and digital transitions … defence and space applications”. Both phosphate rock and “phosphorus” (meaning P4 = white phosphorus) remain on the EU list of “Critical” raw materials (34 materials). Graphite, already on the “Strategic” list, is extended to both synthetic and natural graphite. The trilogue agreement is not public. It will lead to detailed compromise amendments which then go back to European Parliament and Council for validation votes. To ESPP’s understanding, only “Strategic” materials are concerned by the main tools of the CRM Act (EU sourcing, processing and recycling targets; Strategic Projects) but all “Critical” raw materials will benefit from monitoring of supply and uses, programmes to develop recovery and recycling, and stress tests every three years.
European Commission: “Commission welcomes political agreement on the Critical Raw Materials Act”, 13th November 2023.
Council: “Council and Parliament strike provisional deal to reinforce the supply of critical raw materials”, 13th November 2023.
European Commission “feasibility study” considers two sewage sludge management options: 1 = ongoing land use of treated sludge with tighter monitoring and contaminant limits; 2 =mandatory sludge incineration with P-recovery. The study rejects options for ongoing sewage sludge land use without EU regulatory contaminant limits. The study does not select a preferred option of the two considered because of uncertainties about levels of contaminants and related risk, and with the aim of enabling further stakeholder input. The scenario (1) proposes that sewage sludge from larger sewage works applied in agriculture must qualify under the EU Fertilising Products Regulation and that other quality requirements would be applicable to sludge from smaller sewage works used in agriculture or forestry etc. (p31), and also that all sludge used on land should be applied according to crop phosphorus needs and with good management practice requirements (p34).
The study indicates that the EU generates just over 8 Mt/y dry matter (DM) of sewage sludge of which c. 32% is incinerated (based on Eurostat 2021). 10% of EU sewage sludge still goes to landfill, resulting in significant methane emissions.
Table 1 (p8) shows that heavy metal limits are generally lower in current Member State national legislation than in the EU Sewage Sludge Directive (which dates from 1986 and has not been updated), and also that the lowest national heavy metal limits for sewage sludge are in all cases lower than EU Fertilising Products Regulation (FPR) limits (for Organic Fertiliser / Organic Soil Improvers). The average observed heavy metal levels in sewage sludge are also lower than the EU FPR limits for all eight metal contaminants considered. However, JRC note concerns about other chemicals potentially found in sewage sludge, including industrial chemicals, pesticides, pharmaceuticals, personal care chemicals, PFAS, microplastics, and consider (p26) that risk assessments of these chemicals in sludge are inadequate, in particular because they do not take into account local context and combination effects of chemicals in sludge.
The study suggests (p 19-20) that benefits to society are highest for mono-incineration of sewage sludge with phosphorus recovery (option 1). Use of composted or digested sewage sludge in agriculture has net positive benefits (assuming tight contaminant limits and application of nutrients according to crop requirements and not in excess) but significantly lower than for option 1, whereas co-incineration (phosphorus not recovered) has negative net societal impacts and landfilling has strongly negative societal impacts. On the other hand the cost of mono-incineration (option 2) is estimated to be 2-3 x higher than agriculture application (option 1).
Organic carbon returned to soil by use of treated sewage sludge is not considered significant (fig. 5 p 11, p 35) compared to manure and bio-waste.
Short-term agronomic P-efficiency is considered to be higher in mineral P-fertiliser products recovered from sewage sludge incineration ash than in agricultural application of sewage sludge, so leading to lower expected nutrient losses in scenario 2 (p 43-44).
Option 2 (mono-incineration and P-recovery from sewage sludge incineration ash) is estimated to result in additional annualised total EU costs (Capex plus Opex, compared to agricultural sludge application) of 138 – 569 million € per year, depending on the size of sewage works above which this is mandated (138 M€ if sewage works > 500 000 p.e. – 569 M€ if > 20 000 p.e.). If mandated for sewage works > 50 000 p.e. estimated additional cost is 1.4 – 3.3 €/person/year, that is 1-3% of wastewater treatment costs. Correspondingly, option 2 ( > 50 000 p.e.) would generate 3 000 – 4 200 full time job equivalents across Europe.
The study underlines that cost to operators of societally positive sludge management options are higher than for options with negative societal impacts, so that policy action is therefore necessary.
ESPP will make comments to JRC on the content, methodology and conclusions of this study, probably in early 2024. Any input to these comments is welcome, to ESPP by end 2023.
“Feasibility study in support of future policy developments of the Sewage Sludge Directive (86/278/EEC)”, European Commission, JRC Science for Policy Report, L. Egle et al., 2023 https://dx.doi.org/10.2760/305263
European Commission opens public consultation for evaluation of the Nitrates Directive, citing climate, food security, sustainability, nutrient recycling and the commitment to reduce nutrient losses by 50% by 2030. The evaluation will assess if the Directive remains “fit for purpose”, if it is coherent with EU environmental objectives, whether cost and administration burdens can be reduced. The consultation (in 27 languages) is 16 questions plus possibilities for comments or to submit documents. The accompanying “Call for Evidence” specifically notes the question of whether the Directive is sufficiently promoting the recycling of nutrients, including from processed manure, and the EU commitment at COP15 (Convention on Biological Biodiversity) to reduce nutrient losses by 50% by 2030. Phosphates (which are not mentioned in the current Nitrates Directive text) are mentioned in the online introduction to the questionnaire, but not in the questionnaire, not in the Call for Evidence. Recycling of nutrients is cited in Q2.7. Measures to limit inappropriate manure spreading and the 170 kgN/ha manure nitrogen limit are cited in Qs 3.1, 3.2, 3.4, 3.9. Addressing intensive livestock production is cited in Qs 3.1, 3.9. Questions address which Nitrates Directive measures are effective (Nitrate vulnerable Zones, Action Programmes, manure storage, manure spreading limit … Q3.2) and relevance to Water Framework Directive Good Ecological Status and to the 50% nutrient loss reduction objective (both Q3.12).
“The protection of waters against pollution caused by nitrates from agricultural sources – Evaluation”, public consultation preparatory to evaluation of the EU Nitrates Directive (91/676/EEC) and Call for Evidence. Input requested from the public, farmers, stakeholders. Open to 8th March 2024. In all EU languages. HERE.
Please subscribe www.phosphorusplatform.eu/Subscribe
Link to www.phosphorusplatform.eu/eNews082
Download as PDF
3rd Summit of Organic and organo-mineral Fertiliser Industries in Europe.
16-17 January 2024, Brussels & hybrid. SOFIE is the only industry meeting place for organic-carbon-based fertiliser producers, distributors, advisory, technology suppliers. SOFIE1 (2019) attracted 125 participants, with 230 for SOFIE2 (2023).
SOFIE3 has an exceptional lineup of speakers, featuring key insights from esteemed organizations and industry leaders. Join us to hear from the European Commission (DG AGRI and DG GROW), Notified Bodies like CerTrust and EFCI Register, alongside renowned companies such as Yara, ICL, and Fertilisers Europe. We'll also have insightful contributions from Eurofema, EBA, S&P/Fertecon, ADAS, Nutriënten Management Instituut, and IPS Konzalting.
The conference will be enriched by the participation of leading companies in the field, including Yara, K+S, Sede Environment, Culterra, Terramarine, Tessenderlo Group, Unimer, Den Ouden, Fertinagro, Ductor, DCM, Compo, Stiesdal, Biota Nutri, Darling Ingredients, Omya, Honkajoki, Labin, Ormin, Sappi, Agrana Starch, Green Circle, Centeon, AgriBioSource Europe, Alan SRL, The Waste Transformers, Steel Belt Systems, Sedron Technologies, and Sanitation360. This event promises to be a melting pot of ideas and innovations, shaping the future of our industry. Connect, collaborate, and be part of this transformative journey.
Programme and registration www.phosphorusplatform.eu/SOFIE.
Brussels & hybrid, 18th January 2024 Defining “Bio-Based Fertilisers” and FPR “solely biological origin”.
The term “Bio-Based Fertilisers” is today being widely used. For market transparency and policy making, it is important to have a clear and agreed definition of what is a “Bio-Based Fertiliser” and how to define the “Bio-Based” nutrient content of fertilising products. Also, the EU Fertilising Products Regulation 2019/2009 uses the term “of solely biological origin” for nutrients in criteria of several PFCs and there is today no clarity on how this should be interpreted. CEN and ISO methodologies for “Bio-based products: vocabulary” and for defining bio-based content are based on carbon radio-dating, and are not applicable to nutrients.
The meeting will take as starting point the working proposal HERE. Programme: http://phosphorusplatform.eu/BBF2024 Registration Eventbrite
ESPP policy workshop to define proposals for possible regulatory targets for phosphorus and nitrogen reuse-recycling from sewage, Thursday 14th March 2024, Brussels & online.
The proposed UWWTD revision draft text (art. 20) states*: “The Commission is empowered to adopt delegated acts … setting out the minimum reuse and recycling rates for phosphorus and nitrogen …”.
This meeting aims to develop consensus proposals for such “reuse and recycling rates”, covering for example:
* The UWWTD Directive revision is currently under discussion by the European Parliament and Council European Parliament. European Parliament and Council. Both have finalised their positions on this Directive revision, see eNews n°80. Both maintain the principle of targets for phosphorus reuse and recycling, but Council proposed to delete nitrogen from this art. 20. It is expected that the finalised UWWTD Directive will be formally adopted early 2024.
13th March 2024: policy tools to support market pull for recycled nutrients
14th March: proposing UWWT Directive targets for P and N recovery, ESPP policy workshop
Both: Brussels & online. Registration is open www.phosphorusplatform.eu/nutrientevents2024
If you wish to present proposals, positions or evidence at the 14th March meeting: please send a brief outline of your proposed input by 21st January 2024 to
Conference of German States (Land) of Environment Ministers reaffirms the importance of phosphorus recovery and expresses concern that little progress has been made towards the 2029 deadline fixed by German legislation. The Umweltministerkonferenz resolution 1st December 2023 underlines the importance of sustainable management of phosphorus and estimates that P in sewage could potentially substitute nearly half of Germany’s P fertiliser consumption. However, six years after the entry into force of the German sewage sludge ordinance (AbfKlärV, 27th September 2017, see SCOPE Newsletter n°129) requiring phosphorus recovery from sewage, few P-recovery plants are identified and the 2029 implementation deadline may be widely not achieved. The resolution notes that obstacles include insufficient maturity of P-recovery technologies and lack of State regulations enabling passing of P-recovery costs on to wastewater fees. The Ministers call for an operator and stakeholder dialogue in 2024, with the German Phosphorus Platform, to identify obstacles to implementation and solutions, for modifications of regulations to allow passing on of costs and for State support for infrastructure. The Ministers also consider that the German Fertilisers Ordinance should be modified to facilitate the use of sewage-sludge derived phosphorus products in fertilisers when pollutants have been reduced.
Umweltministerkonferenz, 1 December 2023, Münster, agenda points TPO 20 and TOP 21 “Phosphor-Rückgewinnung aus Klärschlamm” https://www.umwelt.nrw.de/presse/detail/ergebnisse-der-101-umweltministerkonferenz-1701431976
Analysis of EU-funded Circular Economy R&D projects shows science publications are the main short-term outcome. Analysed projects completed more than one year earlier produced no direct methodologies and no market products. The study notes that Circular Economy R&D is funded under a wide range on EU programmes (Research Framework Programmes, Bio-based Industries Consortium, Bio-based Industries Joint Undertaking, LIFE, BlueInvest – maritime & aquaculture, Structural and Investment Funds, Recovery Plan for Europe, …). The study identifies 38 projects funded under the EU R&D Framework Programmes FP7 or Horizon Europe, of which 12 had been completed more than one year earlier (6 responded to a questionnaire). The study conclusions state that EU R&D Framework projects are fulfilling their purpose because they are “increasingly societal challenges-driven and market oriented” but this is supported by conjecture or inference rather than evidence. Project participants are c. 44% companies (220) and c.38% research / universities with the remainder being public bodies (the distribution of subsidy funds between participants is not indicated and may be different): companies presumably expected to obtain some benefit from participation, be it subsidies, skills transfer, know-how or technology. The analysed studies completed more than a year ago resulted in no “direct methodologies and/or products for the market”.
“On the societal impact of publicly funded Circular Bioeconomy research in Europe”, A.S. Brandao et al., Research Evaluation, 2023, 00, 1–17 DOI.
The European Commission has proposed to further restrict uses of mercury, with a complete ban of dental amalgam (use, manufacture) and further restrictions on certain types of lamps. Dental amalgam (containing mercury) was already banned for certain populations (children, pregnant and breast-feeding women) in 2017 (art. 10, Mercury Regulation 2017/852, see ESPP eNews n°6). The Commission now proposes (2023/0272 (COD)) to ban all use and manufacture of dental amalgam in Europe from 1st January 2025. Mercury free alternatives exist. Eureau, the EU water industry federation, welcomes the Commission proposal as contributing to reduce water pollution and facilitate the Circular Economy, indicating that over 40% of water bodies in Europe are not achieving Water Framework Directive “good status” because of mercury contamination. In Sweden, Norway and Denmark, where dental amalgam was banned two decades ago, mercury levels in sewage have fallen by 60%. The amalgam ban will also progressively reduce atmospheric mercury emissions from crematoria.
European Commission proposal for a Regulation “amending Regulation (EU) 2017/852 … on mercury as regards dental amalgam and other mercury-added products subject to manufacturing, import and export restrictions”, 14th July 2023, COM(2023) 395 final - 2023/0272 (COD). This proposal is currently with the European Parliament and Council for co-decision. Procedure file here.
The European Commission has opened recruitment for six project officers to work at JRC Seville on Industrial Emissions Directive BAT BREFs and in the new INCITE (EU Innovation Centre for Industrial Transformation & Emissions), 3 – 6 year contracts in the EIPPCB (European Integrated Pollution Prevention and Control Bureau). IED BAT BREFs cited include mining, livestock rearing, landfills, battery manufacture, iron-steel, cement, chemicals, paper, glass.
EU JRC recruitment open to 31st January 2024 http://recruitment.jrc.ec.europa.eu/?site=SVQ
Ostara has completed EU Fertilising Product Regulation (FPR) conformity assessment for its 100% recycled phosphate struvite (magnesium ammonium phosphate) recovered from municipal sewage in Madrid and in The Netherlands. This is the first time a recovered phosphate salt (CMC12) has obtained the EU FPR CE-mark. Ostara’s struvite, marketed as Crystal Green, is pure struvite 5-28-0-16MgO fertiliser, which is considered to release nutrients according to crop requirements, independent of rainfall or irrigation, unlike conventional fertilisers. The FPR conformity assessment was undertaken for Ostara by Certrust (notified body). Ostara indicate that the EU FPR CE-mark now opens the way for Organic Farming certification. The EU Organic Farming Regulation (2023/121, January 2023, see ESPP eNews n°73) authorises use of recovered struvite and precipitated phosphate salts as fertilisers in Organic Farming, only if they “meet the requirements laid down in” the EU FPR.
“Ostara is proud to be the first company in the European Community to successfully pass the conformity assessment procedure of the EU fertilizing Product regulation for a 100% fully recovered struvite fertilizer”, 6 December 2023.
Kemira and Royal Haskoning DHV have announced further trials of vivianite (iron(II) phosphate) magnetic recovery from municipal sewage sludge at Hoensbroek municipal sewage works (Waterschapsbedrijf Limburg WBL The Netherlands). The ViviMag process was initially developed by WETSUS and TU Delft and is today a Kemira patented technology. Anaerobic digestion of sewage sludge tends to reduce iron(III) phosphate to vivianite, which can be magnetically separated from sludge and recovered. A first manual 1 m3/h ViviMag pilot for magnetic separation of vivianite was operated at Nieuwveer; The Netherlands in 2019, then a 1 m3/h fully automated continuous pilot was built by Kemira. It was first operated by Veolia at Schönebeck, Germany (2022) with a digested sludge and a second trial then took place at VCS Søndersø, Denmark on a non-digested sludge in first half of 2023. This pilot installation has today been operated for a total of around 6 months with continuous operation for up to 7 days. The objective of the Kemira – Royal Haskoning DHV collaboration is to further test and assess the ViviMag technology at another WWTP in the Netherlands. This new trial has just started and will last at least 6 months. The vivianite may find a market as a niche fertiliser product in regions where soils suffer from iron deficiency, or research is underway to possibly develop a process to separate phosphorus in vivianite from iron, so enabling phosphorus recycling into mainstream phosphate fertilisers, and recycling of the iron for reuse in sewage phosphorus removal - Another option being explored is use of vivianite as a raw material to product lithium iron phosphate for use in batteries, if it can be shown that this is chemically efficient and that impurity levels are compatible with battery electronics specifications.
“Kemira and Royal HaskoningDHV to collaborate in award-winning phosphorus recovery technology”, 12th December 2023.
“Wastewater: recover vivianite mineral, from lab to pilot scale - with Wetsus partner”, 5th December 2023
Toopi Organics, a French startup, will receive 8.4 M€ EU funding to develop their Lactopi Start microbial biostimulant, produced by cultivating specific bacteria using separately collected human urine as substrate. In 2023, Toopi Organics collected and processed around 500 000 litres of urine from sites including motorway service stations, tourist attraction sites, city public toilets and music festivals and events. The funding is EU Horizon (European Innovation Council EIC Accelerator) with 2.4 M€ subsidy and 6 M capital. Over 100 field trials of the product will be carried out across six EU member states and Toopi Organics intends to open a full-scale production site near Bordeaux, France in 2025 (objective one million litres/year litres of product per year, sufficient for application to e.g. 40 000 ha @ 25l/ha) followed by further sites in France and/or Belgium. The urine is filtered to remove pathogens and most organic contaminants. The processed urine is used as fermentation substrate to grow specific lactobacillus microorganisms and lactic acid, both of which act as biostimulants, enhancing crop nutrient uptake by solubilising phosphorus present in soil and improving and stimulating the plant root system. The resulting product does contain some nutrients, but does not claim fertilisation (nutrient supply) as a mode of action. The company indicates that the product meets the EU FPR (Fertilising Products Regulation) PFC 6(A) “Microbial plant biostimulant” criteria (stimulation effect on plant nutrition independent of product nutrient content, contaminant and pathogen limits) but cannot today be registered as an FPR CE-mark product because the cultivated lactic acid bacteria is not listed in CMC7. The product is authorised under national regulations in France, Belgium, Greece, Italy, Portugal and Spain.
“Toopi Organics décroche un financement de 8,4M€ pour développer la valorisation agricole de l’urine humaine en Europe”, 14th November 2023 here.
EasyMining webinar with veterinary and agricultural experts suggests that calcium phosphates recovered from sewage sludge incineration ashes could be safely and effectively used in animal feed, if regulatory obstacles were lifted.
Beth Young, Epidemiologist, Swedish National Veterinary Institute (SVA), presented a risk assessment for pathogens for calcium phosphates recovered from sewage sludge incineration ash by EasyMining’s Ash2Phos process. This recovered phosphorus has been shown to perform just as well as commercial phosphate feed additives, providing digestible phosphorus in trials with pigs and chickens (see SLU animal feed trials study results). The risk assessment considered probability of transmission of ‘worst case’ pathogens (prions for BSE – scrapie) in the stages: presence in sewage sludge, incineration of sludge, Ash2Phos ash processing. No data was found on prions in sewage sludge, two studies suggest that spiked prions survive in sludge, but low levels of prion infections in livestock and actions to reduce risks mean that the probability of prion presence in sewage is negligible. Probability that prions survive sewage sludge incineration is very low. The probability that prions survive the Ash2Phos process (acid, alkali, filtration, lime) is considered negligible. Overall the probability that bacteria, viruses or prions could be transmitted by the recovered phosphate is negligible, although there are knowledge gaps for prions.
Kerstin Sigfridson, Product Developer, Lantmännen, Swedish farmers’ cooperative, with 18 000 farmers, providing 1 Mt/y of animal feed, that is around 50% of Swedish livestock. Lantmännen has ambitious sustainability and innovation objectives, including active work on livestock diets. Lantmännen considers that the use of recycled phosphates offers sustainability benefits and that the Ash2Phos recovered phosphate has shown the same digestibility as commercial phosphate feed additives (DCP) and is safe to use.
Sara Stiernstörm. Product Manager, EasyMining, explained that the Ash2Phos recovered phosphate (RevoCaP precipitated calcium phosphate) offers CO2 benefits and low contaminants compared to commercial feed phosphates and is fully soluble in citric acid (digestible). It contains around 35% Ca and 17% P. Ash2Phos can recover >90% of the phosphorus in ash, as well as recycling iron, aluminium and sand. Two full scale plants are today planned, both 30 000 t-ash/y, in Schkopau, Germany (with Gelsenwasser), commissioning planned 2027 and Helsingborg Sweden, planned 2028. However, there is today a major regulatory obstacle: the animal feed Regulation 767/2009 prohibits use of products from sewage sludge. This needs to be changed. EasyMining wishes to see: P-recycling from sewage to be made obligatory, sewage sludge incineration ash should be considered a safe starting point, product legislation should be based on quality not on input material origin, and incentives should support the use of clean and safe recycled materials.
Webinar “Safe use of recycled phosphate”, 14th December 2023, organised by EasyMining (Ragn-Sells Group). Watch here.
Webinar “Improving sustainability of livestock production”, 3rd February 2022, watch here.
ESPP will meet the European Commission to discuss nutrient recycling from marine and aquaculture in week 3 of January 2024. We have prepared a draft table to summarise legal status and questions and welcome your input. This draft table covers different marine / aquaculture / algae materials under EU legislations: waste, fertilisers, animal by-products, Organic Farming, animal feed. Please send any input, comments or additions concerning nutrient and organics recycling from fish and marine product processing, aquaculture wastes and fish sludge, algae production, in particular where regulations are today unclear or are posing obstacles to the Circular Economy.
ESPP draft table on legal status of nutrient recycling from aquaculture and fisheries wastes and by-products, for comments. www.phosphorusplatform.eu/regulatory
Overview shows significant, increasing nutrient recycling potential from fish processing wastes and from aquaculture, but need to address regulatory obstacles and absences and to develop technologies adapted for different waste flows. Aquaculture production increased from 20 to 90 Mt/y worldwide over three decades to 2020, and today represents around half of world seafood and fish production. Processing waste can be 55 - 75 % of fish weight. Fish sludge, made up of water, fish feed, fish faeces and biomass from dead fish or other organisms, can represent c. 1.5 t sludge /t fish produced. Nutrient content of fish sludge varies widely, depending particularly on feed supply. Around 2/3 of P in fish feed is left in fish sludge not recovered in the fish. Solid fraction of fish sludge can contain e.g. 0.0015 – 0.03 % of P and N, so that nutrient recycling generally requires concentration. A number of studies are identified as showing effectiveness of fishery wastes or fertilising materials processed from them. Processed discussed for fishery processing wastes or fish sludge include anaerobic digestion, fermentation, composting, struvite recovery, thermal treatment and pyrolysis, emulsion (oil extraction and caking), drying, hydrolysis. Fish protein hydrolysates and chitin/chitosan from crustaceans are considered to be plant biostimulants as well as providing plant nutrients. Recycling is impacted by a range of EU regulations including Industrial Emissions Directive, waste regulations, Animal By-Products, food hygiene and health, fertilisers and Organic Farming. However, products derived from fishery wastes, by-products or aquaculture sludge are not yet included as a CMC category in the EU Fertilising Products Regulation 2019/1009. Attention should be paid to salinity.
“Nutrient recovery and recycling from fishery waste and by-products”, EU Horizon 2020 Sea2Land project, J. Zhang et al., J. Environmental Management Volume 348, 15 December 2023, 119266 DOI.
Paper analyses sewage sludge valorisation routes and fate of sewage phosphorus in Czech Republic and in Japan. More than three quarters of Czech sewage sludge is applied to soil (use in agriculture, compost), 12% is co-incinerated and 7% still goes to landfill. In Japan only around 11% of sewage sludge is applied to soil, with most going to combustion (71% incineration, but also use as fuel in cement production and other thermal processing), with <1% going to landfill. Phosphorus content of sewage sludge in both countries (from literature) was 2.4 – 3.4 %P/DM, with higher P contents in digested sludge (this can be expected, because organic carbon is reduced in the digestion process). The paper estimates that in both countries, phosphorus in sewage could replace around 13 – 16 % of mineral phosphate fertiliser use, but does not take into consideration the fact that three quarters of Czech sewage sludge phosphorus is today input to soils with land application, mostly after anaerobic digestion or composting. The paper suggests that sewage sludge does not provide the same phosphorus effectiveness in crops as commercial fertilisers: two papers are cited to support this: Christiansen 2020 and Lemming 2017).
“P‑recovery versus current sewage sludge treatment policy in the Czech Republic and Japan”, M. Husek et al., 2023, Clean Technologies and Environmental Policy DOI.
New national project led by Wageningen University and Research will look at recycling of nutrients from sewage, separative sanitation, and agri-food wastewaters including dairy, brewery, sugar and potato industries. Focus is on producing recycled fertilisers for use in arable farming, feed crops cultivation, (circular) horticulture and organic farming. The 2023-2026 project involves Wageningen Environmental Research (WENR), KWR, LeAF, the Netherlands Nutrient Platform, as well as waste & water companies, agriculture and horticulture organisations, fertiliser industry, (recycling) technology suppliers and local and regional authorities. Objectives include implementation of nutrient recycling and valorisation cases, development of a quality system for recycled nutrient products from wastewaters, data on nutrient flows and losses, assessment of the agronomic value of recovered nutrient products and analysis of regulatory barriers.
Public-Private Collaboration (PPS) project “Closing the cycle of nutrients from wastewater and process water (KNAP)” website.
SCOPE Newsletter: www.phosphorusplatform.eu/SCOPEnewsletter
eNews newsletter: www.phosphorusplatform.eu/eNewshome
If you do not already receive ESPP’s SCOPE Newsletter and eNews (same emailing list), subscribe at www.phosphorusplatform.eu/subscribe
LinkedIn: https://www.linkedin.com/company/phosphorusplatform
Slideshare presentations: https://www.slideshare.net/phosphorusplatform - Twitter: @phosphorusESPP
YouTube https://www.youtube.com/user/phosphorusplatform
Identify policy tools to support market pull for recycled nutrients which could achieve consensus across industry and users.
The EU Green Deal 2019 mentions possible “legal requirements to boost the market for secondary raw materials, with mandatory recycled content” and the EU Circular Economy Action Plan 2020 refers to “stimulating the markets for recovered nutrients”. To date, there are no EU proposals.
Industry and user positions on possible market pull policy tools can differ. The aim of this meeting is to identify policies which could achieve consensus across recycled product producers (waste companies, recycling technology suppliers), industry and uses (fertilisers industries, distributers, farmers). And to discuss how to elaborate technical proposals to submit to policy makers.
To elaborate ambitious, feasible and consensus proposals for regulatory targets for phosphorus and nitrogen reuse-recycling from municipal wastewater.
This workshop aims to develop consensus proposals, to submit to the European Commission, and will discuss:
Available on Eventbrite.
Please subscribe www.phosphorusplatform.eu/Subscribe
Link to www.phosphorusplatform.eu/eNews081
Download as PDF
3rd Summit of Organic and organo-mineral Fertiliser Industries in Europe.
16-17 January 2024, Brussels & hybrid. SOFIE is the only industry meeting place for organic-carbon-based fertiliser producers, distributors, advisory, technology suppliers. SOFIE1 (2019) attracted 125 participants, with 230 for SOFIE2 (2023). Programme now online. Organic fertiliser company showcase pitches are welcome.
Programme www.phosphorusplatform.eu/SOFIE. Registration Eventbrite
Brussels & hybrid, 18th January 2024 Defining “Bio-Based Fertilisers” and FPR “solely biological origin”
The term “Bio-Based Fertilisers” is today being widely used. For market transparency and policy making. It is important to have a clear and agreed definition of what is a “Bio-Based Fertiliser” and how to define the “Bio-Based” nutrient content of fertilising products. Also, the EU Fertilising Products Regulation 2019/2009 uses the term “of solely biological origin” for nutrients in criteria of several PFCs and there is today no clarity on how this should be interpreted. CEN and ISO methodologies for “Bio-based products: vocabulary” and for defining bio-based content are based on carbon radio-dating, and are not applicable to nutrients.
The meeting will take as starting point the working proposal HERE. Programme: http://phosphorusplatform.eu/BBF2024 Registration Eventbrite
European Commission “feasibility study” considers two sewage sludge management options: 1 = ongoing land use of treated sludge with tighter monitoring and contaminant limits; 2 =mandatory sludge incineration with P-recovery. The study rejects options for ongoing sewage sludge land use without EU regulatory contaminant limits. The study does not select a preferred option of the two considered because of uncertainties about levels of contaminants and related risk, and with the aim of enabling further stakeholder input. The scenario (1) proposes that sewage sludge from larger sewage works applied in agriculture must qualify under the EU Fertilising Products Regulation and that other quality requirements would be applicable to sludge from smaller sewage works used in agriculture or forestry etc. (p31), and also that all sludge used on land should be applied according to crop phosphorus needs and with good management practice requirements (p34).
The study indicates that the EU generates just over 8 Mt/y dry matter (DM) of sewage sludge of which c. 32% is incinerated (based on Eurostat 2021). 10% of EU sewage sludge still goes to landfill, resulting in significant methane emissions.
Table 1 (p8) shows that heavy metal limits are generally lower in current Member State national legislation than in the EU Sewage Sludge Directive (which dates from 1986 and has not been updated), and also that the lowest national heavy metal limits for sewage sludge are in all cases lower than EU Fertilising Products Regulation (FPR) limits (for Organic Fertiliser / Organic Soil Improvers). The average observed heavy metal levels in sewage sludge are also lower than the EU FPR limits for all eight metal contaminants considered. However, JRC note concerns about other chemicals potentially found in sewage sludge, including industrial chemicals, pesticides, pharmaceuticals, personal care chemicals, PFAS, microplastics, and consider (p26) that risk assessments of these chemicals in sludge are inadequate, in particular because they do not take into account local context and combination effects of chemicals in sludge.
The study suggests (p 19-20) that benefits to society are highest for mono-incineration of sewage sludge with phosphorus recovery (option 1). Use of composted or digested sewage sludge in agriculture has net positive benefits (assuming tight contaminant limits and application of nutrients according to crop requirements and not in excess) but significantly lower than for option 1, whereas co-incineration (phosphorus not recovered) has negative net societal impacts and landfilling has strongly negative societal impacts. On the other hand the cost of mono-incineration (option 2) is estimated to be 2-3 x higher than agriculture application (option 1).
Organic carbon returned to soil by use of treated sewage sludge is not considered significant (fig. 5 p 11, p 35) compared to manure and bio-waste.
Short-term agronomic P-efficiency is considered to be higher in mineral P-fertiliser products recovered from sewage sludge incineration ash than in agricultural application of sewage sludge, so leading to lower expected nutrient losses in scenario 2 (p 43-44).
Option 2 (mono-incineration and P-recovery from sewage sludge incineration ash) is estimated to result in additional annualised total EU costs (Capex plus Opex, compared to agricultural sludge application) of 138 – 569 million € per year, depending on the size of sewage works above which this is mandated (138 M€ if sewage works > 500 000 p.e. – 569 M€ if > 20 000 p.e.). If mandated for sewage works > 50 000 p.e. estimated additional cost is 1.4 – 3.3 €/person/year, that is 1-3% of wastewater treatment costs. Correspondingly, option 2 ( > 50 000 p.e.) would generate 3 000 – 4 200 full time job equivalents across Europe.
The study underlines that cost to operators of societally positive sludge management options are higher than for options with negative societal impacts, so that policy action is therefore necessary.
ESPP will make comments to JRC on the content, methodology and conclusions of this study, probably in early 2024. Any input to these comments is welcome, to ESPP by end 2023.
“Feasibility study in support of future policy developments of the Sewage Sludge Directive (86/278/EEC)”, European Commission, JRC Science for Policy Report, L. Egle et al., 2023 https://dx.doi.org/10.2760/305263
European Commission opens public consultation for evaluation of the Nitrates Directive, citing climate, food security, sustainability, nutrient recycling and the commitment to reduce nutrient losses by 50% by 2030. The evaluation will assess if the Directive remains “fit for purpose”, if it is coherent with EU environmental objectives, whether cost and administration burdens can be reduced. The consultation (in 27 languages) is 16 questions plus possibilities for comments or to submit documents. The accompanying “Call for Evidence” specifically notes the question of whether the Directive is sufficiently promoting the recycling of nutrients, including from processed manure, and the EU commitment at COP15 (Convention on Biological Biodiversity) to reduce nutrient losses by 50% by 2030. Phosphates (which are not mentioned in the current Nitrates Directive text) are mentioned in the online introduction to the questionnaire, but not in the questionnaire, not in the Call for Evidence. Recycling of nutrients is cited in Q2.7. Measures to limit inappropriate manure spreading and the 170 kgN/ha manure nitrogen limit are cited in Qs 3.1, 3.2, 3.4, 3.9. Addressing intensive livestock production is cited in Qs 3.1, 3.9. Questions address which Nitrates Directive measures are effective (Nitrate vulnerable Zones, Action Programmes, manure storage, manure spreading limit … Q3.2) and relevance to Water Framework Directive Good Ecological Status and to the 50% nutrient loss reduction objective (both Q3.12).
“The protection of waters against pollution caused by nitrates from agricultural sources – Evaluation”, public consultation preparatory to evaluation of the EU Nitrates Directive (91/676/EEC) and Call for Evidence. Input requested from the public, farmers, stakeholders. Open to 8th March 2024. In all EU languages. HERE.
Political agreement between Council and Parliament adds only aluminium to the “Strategic” materials list. Phosphorus is not added to the ‘Strategic’ materials list but remains on the ‘Critical’ raw materials list. The ‘Strategic’ list is 16 raw materials identified as supply-critical for ‘strategic technologies’ defined as “green and digital transitions … defence and space applications”. Both phosphate rock and “phosphorus” (meaning P4 = white phosphorus) remain on the EU list of “Critical” raw materials (34 materials). Graphite, already on the “Strategic” list, is extended to both synthetic and natural graphite. The trilogue agreement is not public. It will lead to detailed compromise amendments which then go back to European Parliament and Council for validation votes. To ESPP’s understanding, only “Strategic” materials are concerned by the main tools of the CRM Act (EU sourcing, processing and recycling targets; Strategic Projects) but all “Critical” raw materials will benefit from monitoring of supply and uses, programmes to develop recovery and recycling, and stress tests every three years.
European Commission: “Commission welcomes political agreement on the Critical Raw Materials Act”, 13th November 2023.
Council: “Council and Parliament strike provisional deal to reinforce the supply of critical raw materials”, 13th November 2023.
DG GROW asks for input on which issues to consider in preparing the upcoming evaluation of the EU Fertilising Products Regulation. The Commission notes that the evaluation must be completed by July 2026 and expects to assess impacts on markets, trade and companies, health and environment (levels of cadmium and of other contaminants) and at the wider context as to whether the Regulation brings added value compared to national fertiliser regulations. Comments are invited in particular as to what aspects should be assessed concerning markets and definitions of PFCs, coherence of the FPR, interactions with REACH, Animal By-Produces Regulations, Nitrates Directive, Farm-to-Fork Strategy, conformity assessment procedures, contaminants, effectiveness of the FPR and interactions with national regulations, or to indicate other questions which should be considered in the evaluation. Comments can be submitted only via members of the EU Fertilisers Expert Group (inc. ESPP).
Deadline for comments is 31st December, so please send any comments you wish ESPP to submit to ESPP before mid December.
Finland’s new national fertiliser regulation defines criteria for different fertiliser types and inputs, covering composts, digestates, biochars and ashes. Sewage and industrial sludges are authorised for use in agriculture and in biochars, subject to specified conditions. This Finland national regulation enables fertilisers to be sold in Finland, not on the EU market. The overall structure and product and input families show similarities to the EU Fertilising Products Regulation, with product categories and component materials, but criteria are in some cases stricter or different, and are less comprehensive. Sewage sludge can be included in biochars subject to minimum 500°C x 5 minutes pyrolysis, and subject to the criteria defined for all biochars. Sewage sludge after certain other specified treatments (e.g; specified composted, digested, limed, aged) can be used in agriculture with limitations of quantities (per five years) and subject to analysis of metals in soil. Combustion ashes are authorised under conditions, with specific conditions for forest ash (minimum K and P contents). Cadmium limits at 22 mgCd/kgP2O5 (= 50 mgCd/kgP) are the same as those in the existing 2006 EU derogation for Finland (see ESPP eNews n°59): this derogation allows Finland to limit cadmium not only in national fertilisers but also in EU fertilisers sold in Finland. It is ESPP’s understanding that authorisation of a material under this national regulation authorises use in agriculture but does not give End-of-Waste status.
Finland national fertilisers regulation 964/2023, 6th October 2023 (Maa- ja metsätalousministeriön asetus)
Meeting updated on: EU Fertilising Products Regulation (FPR) evaluation, product Conformity Assessment, standards development, FAQ guidance document, animal by-products (“Processed Manure”), CMCs, biodegradability criteria …
ESPP participated in the European Commission official fertilisers working group meeting 28-29 November. The summary below is not officially validated and is provided for information only, and may contain inaccuracies.
Giel Tettelaer (ECFI), chair of the Notified Bodies coordination group, explained work underway on CE-product certification (Conformity Assessment) processes, including challenges of how to rationalise audit of multiple decentralised sites supplying recycled materials and how to apply “batch” audit requirements to liquid flows.
An updated list of standards under development to support the FPR was circulated here. New standards needed for animal by-products and “Processed Manure” in CE-fertilisers are not yet mandated because CEN does not have sufficient human resources to take these on.
A number of additional question-answers were validated for the living Commission FAQ guidance document (here). Questions concerning the use of plants as inputs to “production processes“ in CMC15, the definition of “nutrients … of solely biological origin”, animal by-products, sewage sludge were not resolved pending further discussion.
Biodegradability criteria for fertiliser polymers, mulches, etc. are pending finalisation (following the AIMPLAS report here) and should be published for public consultation in January 2024.
The Delegated Act amending the FPR to enable used of “Processed Manure” (as defined in the Animal By-Products Regulation) is finalised here and is expected to be published in coming months. ESPP requested clarification in the FAQ guidance document concerning application for manures used as inputs for composts, digestates, ashes and pyrolysis materials (biochars) when the ABP process criteria can be achieved simultaneous with the FPR CMC process criteria. An external consultant (QLab, Greece) has been commissioned by the Commission to carry out studies on other Cat 2-3 animal by-products cited in the DG SANTE ABP Regulation amendment 2023/1605 prior to integrating these into the FPR CMC10.
NMI, The Netherlands, has been contracted by the Commission to study possible new CMC materials or changes to CMC processing and other criteria. This study will centre on the materials and requests submitted to the survey (ESPP eNews n°69) A second study is being contracted to assess additional biostimulant microorganisms.
NMI presented work underway (interim report for comment and input) to develop guidance on Technical Documentation to support Conformity Assessment, including an IT support tool.
Input was requested by the Commission to identify questions for evaluation of the EU Fertilising Products Regulation (see above).
The 3rd SOFIE (Summit of the Organic Fertilisers Industry in Europe), 16-17 January, Brussels and online, will offer opportunities to discuss these different points, for organic-carbon based fertilisers: SOFIE.
EU Fertilisers Expert Group documents (CIRCABC public) HERE.
European Commission launches fertilisers pages on the EU Agri-food Data Portal. Industry and stakeholder comments are welcome. This follows the commitment, in the Commission Communication on fertiliser supply and price (November 2022, see ESPP eNews n°72), to improve data access. The newly launched fertiliser sector pages on the EU Agri-food Data Portal present data and visualisations on fertiliser price trends (by month, average prices aggregated by nutrient N, P and K), fertiliser production in Europe (by fertiliser type and raw material, by Member State, per year) and fertiliser trade (import export, by Member State and trade partners, by fertiliser type and raw material, per month). Statistics on fertiliser production and trade are also available for a selected number of products. The data shown suggests that phosphorus fertiliser prices increased by nearly 4x from 2020 to early 2022, before falling back, with today’s prices still nearly 2x the 2020 level. Phosphate fertiliser production in the EU is indicated to be 500 000 – 700 000 t-fertiliser/year since around 2011, with main producers since 2016 being Poland, Italy and France. However, if “mixed” fertilisers are also included, the production is much higher (c. 12 000 t-fertiliser/year) with main producing countries Finland, Spain, Belgium, Poland, Italy, Greece, France.
European Commission Agri-food date portal: Fertiliser https://agridata.ec.europa.eu/extensions/DataPortal/fertiliser.html
See also: Fertilisers (europa.eu) and European Commission call for experts for EU Fertilisers Market Observatory in ESPP eNews n°74.
Plasma nitrogen fixing and stabilisation technology from N2 Applied, rolled out with GEA, is nominated for the Boerenbusiness Agribusiness Awards 2023 and is now rolled out into Germany in addition to installations in Norway, Sweden, Denmark, Netherlands, UK. The first installation in Germany, rolled by GEA, is treating dairy manure digestate on a farm in Meschede, Northern Germany.
Boerenbusiness Agribusiness award: https://www.boerenbusiness.nl/award/genomineerden
N2 Applied news: https://n2applied.com/latestnews/
How will we feed ten billion people in the world ? Ragn-Sells calls for action on nutrient recycling. Food waste could feed 1 ¼ billion. Recycling of sewage nutrients is essential to sustain food production and reduce environmental impacts. Ragn-Sells state that without phosphorus and nitrogen inputs, agricultural crop production would be cut by half. The company is developing nutrient recycling with EasyMining technology for phosphorus, nitrogen and potassium recovery from sewage, aquaculture wastes and municipal waste incineration ash. “We want to accelerate change, scale circular models and create synergies that reward innovative companies.”
Ragn-Sells 10 Billion Challenge “Changing food together” https://www.10billionchallenge.org/
The European fertilisers industry fixes ambitions to reduce GHG emissions 70% by 2040 and to net-zero by 2050 through decarbonising existing fertiliser technologies and green hydrogen for ammonia. Decarbonising strategies include electrolysis, carbon capture and storage and biomethane. Green ammonia is produced with hydrogen from electrolysis using renewable energy. Estimated costs include 17 billion € for electrolysers, 3 billion € for hydrogen pipelines and 64 billion € to supply green electricity from offshore wind. The roadmap underlines the need for varied approaches adapted to specific local contexts (logistics, infrastructure, raw materials, energy …). Five prerequisites are identified as access to competitive green energy, boosting market demand for climate-neutral fertilisers (through a labelling system accompanied by a mandatory purchasing target for all EU nitrogen fertiliser purchasers), de-risk support for early investments, protection against unfair competition from imported fertilisers (Carbon Border Adjustment Mechanism) and a legal and funding framework. The roadmap documents point to the need for “availability of nutrients for recycling” and for an industry strategy combining organic and mineral nutrients, nutrient recycling, improved nutrient efficiency fertilisers, soil organic matter and carbon farming. The roadmap was launched by Fertilizers Europe at an event in Brussels, 14th November 2023, with 100+ participants, including a panel discussion with representatives from the European Parliament, European Commission, the fertilizers and agriculture businesses.
“Decarbonising Fertilizers by 2050 - Fertilizers Europe”, 14th November 2023 https://www.fertilizerseurope.com/decarbonising-fertilizers-by-2050/ and “Roadmap for the European Fertilizer Industry” (Guidehouse for Fertilizers Europe), 22nd September 2023.
The annual forum of DPP, the German Phosphorus Platform, gathered nearly 100 participants in Frankfurt and online, discussed P-recycling implementation, and awarded a new 1 000 € research prize. The day before, the DPP's general meeting took place and members elected a new board for the next two years: Simone Apitz, Hessian Ministry for the Environment, remains DPP Chair, and the Board includes members from Dechema, SWW Wundsiedel, Veolia, EasyMining, MSE and Justus Liebig University Giessen. At the DPP Forum, projects on recycled nutrients in Organic Farming (nureg4org: final report here) and on sewage sludge incineration and P-recovery capacity (Refoplan) were presented. The new DPP research prize of 1 000 € for a thesis addressing phosphorus recycling, sponsored this year by Remondis (member of DPP), was awarded to Jannik Mühlbauer (TU Dresden) for his thesis “Laboratory studies on thermochemical sewage sludge (Contact). At the end of the event, participants answered the key question "P-Recycling - stagnation or progress?" with a show of hands. The majority voted "progress". Simone Apitz appealed to all stakeholders to act now and discuss the topic across networks so that the implementation of a sustainable phosphorus economy can succeed.
DPP Forum 16th October 2023 https://www.deutsche-phosphor-plattform.de/aktuelles-forum/
Webinar, organised by the European Biostimulants Industry Council (EBIC), discusses how biostimulants can support farmers in adapting to changing environmental conditions and extreme weather events. The meeting, 8th November 2023, gathered more than 500 participants in presence and online, and was moderated by Kevin Bosc, EBIC, who introduced the challenges faced by farmers and food production companies in adapting to climate change and highlighted the importance of building resilient and sustainable food systems, presenting biostimulants as part of the solution.
Jens Boyen, Permanent Representation of Belgium to the European Union, highlighted how extreme events disrupt the food system and the food supply chain, impairing farmers’ possibility to plan their harvests, causing the spread of pests and diseases, reducing biodiversity and soil health. Many technologies are trying to face these problems, including genomic techniques to develop adapted crop varieties, biocontrol as an alternative to chemical pesticides, biostimulants to strengthen plants’ adaptation to abiotic stressors, and new types of irrigation systems. Policy actions are essential for these new tools to reach the farmers, as well as financial support, funds to research and innovation, and proper tools for risk management for farmers like insurance policies.
Felipe Cortines, a farmer from Andalucía, emphasised that the main problems faced by farmers are extreme and random climatic events and market disruptions increasing costs and threatening farmers’ profitability. In his opinion, biostimulants are a useful tool, as they are tailor-made for specific functions, although their cost is high and they are not easy to use: more knowledge and training on how to use these products are needed to make the best use of them.
Lisa Boulton, Purina PetCare (Nestlé), introduced the company’s Regenerative Agriculture initiative and work with seaweed-based biostimulants. Field trails started in the UK in 2022 to test the improvement in plant performance, including nutritional content of the grains and resistance to abiotic stress, the possibility to reduce the use of traditional fertilisers while maintaining or increasing the yield, and the impact on biodiversity and on the carbon stored in the soil. More trials planned in France, Italy and Hungary. For these solutions to be taken up, a systemic approach is needed, including incentives for farmers, regulatory frameworks, farmers’ education and relevant stakeholders’ engagement. She also presented a project where seaweed amendments and biostimulants are produced from seaweed grown on nutrients absorbed from coastal waters where excess N and P deriving from land may threaten ecosystem health.
Carlos Rodriguez-Villa Förster, EBIC, pointed out that many biostimulant products are currently not covered by the FPR, and regulatory barriers remain for some of these products to gain access to market. Policy and regulatory coherence, as well as education, training and incentivisation for farmers are required. He remarked that biostimulants are not a standalone solution but part of a broader toolbox that farmers can use, and concluded the meeting by highlighting the need to continue engaging with agri-food chain, policymakers, academia and other stakeholders to raise awareness on biostimulants and on how they can support common objectives.
"Farmers and food chain actors debate the role of plant biostimulants in helping farmers adapt to climate change": EBIC summary here.
"A seaweed aquaculture imperative to meet global sustainability targets" Duarte et al. (2022) Nature Sustainability DOI
We here summarise a number of recent scientific studies proposing possible future routes to produce elemental phosphorus (P4),. Elemental phosphorus is on the EU Critical Raw Materials List, because there is today no production in Europe and the EU is dependent on imports from only 3-4 countries.
P4 is today produced by carbothermal reduction, using coke in furnaces operating at c. 1400°C, with high electricity consumption and greenhouse gas emissions.
Other proposed routes to P4 are presented in
Study suggests that P4 could be produced at c. 1000°C by reducing phosphoric acid with activated carbon, instead of c. 1400°C using phosphate rock and coke. Lab-scale experiments by Yoshida, Yu et al. (reactor tube 1200 cm x diameter 32 cm) containing a layer of activated carbon and a layer of activated carbon soaked in phosphoric acid (85% acid / 15% water). With the activated carbon at c. 1000°C and the P-acid soaked carbon at c. 700°C, under argon gas, yellow phosphorus (white phosphorus = elemental P4 with some impurities) was recovered by bubbling the offgas through hot water. The authors state that the phosphoric acid is first vaporised as P4O10 then reduced to gaseous P4. In this lab experiment, after heating the reactor for several hours, around 50% of the phosphorus in the input phosphoric acid was recovered as P4.
“Yellow Phosphorus Production from Phosphoric Acid by Carbothermic Reduction”, H. Yu et al., REWAS 2022: Developing Tomorrow’s Technical Cycles (Volume I), The Minerals, Metals & Materials Series, https://doi.org/10.1007/978-3-030-92563-5_31
See also “Carbothermic Reduction of Phosphoric Acid Extracted from Dephosphorization Slags to Produce Yellow Phosphorus”, Int. J. Materials and Metallurgical Engineering Vol:13, No:11, 2019, summarised in ESPP eNews n°39.
This is not a new approach and was presented for example in the 2010 US patent WO 2010 / 029570 for production of elemental phosphorus (P4) from phosphoric acid and carbon. This patent notes that obstacles to achieving this are the release of water from phosphoric acid, which requires excess carbon to react with this water, and the sublimation of phosphoric acid to gaseous metaphosphates without reacting with carbon. The latter obstacle is addressed in the patent by selective different heating in different parts of the reactor.
In a more recent patent from Université Mohammed VI Polytechnique, Morocco, EP 3891099 2023, production of elemental phosphorus from phosphoric acid is proposed using different (hydrophilic) carbon sources: biomass, sewage sludge organic polymers, kerogen (geological carbon deposits). The phosphoric acid is first reacted with the carbon source (at 80 – 150°C) then carbothermal reduced at 550 – 950 °C to produce elemental phosphorus (P4).
ESPP comment: these processes may enable P4 production at a lower temperature than the existing industrial furnace route (1000°C vs. 1400°C) and possibly with lower energy consumption (no silicate slag production), but total energy consumption needs to be calculated taking into account the production and concentration of the phosphoric acid, activation of carbon, P-recovery rates, furnace design and elimination of impurities from the carbon source and from the phosphoric acid (or purification of the phosphoric acid).
Matsubae-Yokoyama et al. have estimated that 4% of global phosphorus flows are in steel industry wastes (SCOPE Newsletter n°122). However, to date, despite a number of research publications (as ESPP sees things) there seems to be no suggestion of an effective process to recover the phosphorus in such slag, in which iron is present from which the phosphorus must be separated to so recover it in a useful form, and in which the phosphorus is at very low levels (1 – 1.5% P). Phosphorus is deliberately left in slag from existing phosphorus furnaces at concentrations of a few % in steel slag in order to avoid unwanted reactions in the furnace (silicon reduction).
Lab tests (Liu et al. 2023) seem to show failure to recover phosphorus from calcium phosphate doped iron slag: less P was recovered than was added. The “industrial converter slag” used initially contained 1% P and 25% iron. Calcium phosphate (Ca3(PO4)2) and silicon dioxide (SiO2) were added to up to 1.7, 2.6 and 3.4 %P. This was heated to 1450°C then carbon was added (to 1.5x theoretical reduction requirement) and temperature maintained for 60 minutes. At the higher calcium phosphate doping rates, the level of P in the slag remained considerably higher than in the initial (non P-doped) slag, and at the lower P addition rate, the final P concentration in the slag after one hour of reaction time was still >90% that of the initial slag P level suggesting none or nearly none of the initial slag P level was potentially recoverable (only the added calcium phosphate P was being released from the slag).
Lab tests (Tong et al. 2023) of carbothermal P-removal from converter slag show that although phosphorus is partly released as P2 gas, most of the phosphorus ends up as ferrophosphorus (PxFey). The authors indicate that China’s iron and steel industries produce around one billion t/y of converter slag, much of which ends up stockpiled as waste because it cannot be recycled back into the iron furnaces because of its chemical characteristics. Lab-scale tests (100 g batch) used converter slag with c. 1.3% P, heated at c 1500°C with coke for one hour. Nearly 30% of P was removed from the slag.
Lab tests (Wang et al. 2022) heating converter slag with coke at 1600°C with different contents of iron oxide (FeO) show that FeO up to c. 30% increases P gasification, but above this may decrease P gasification. The converter slag contained 1.3 %P. Around one third of the P in the slag was removed by gasification after one hour at 1600°C with coke with 15% FeO increasing to nearly three quarters with 30% FeO.
Lab tests (Nakase et al., 2017) possibly showed up to 50% extraction of P from steel slag by thermochemical reduction with coke at 1400°C. The trials used 100g of different steelmaking slags with graphite as reducing agent in a lab-scale induction furnace (30 minutes), with fifteen different tests (temperature 1200°C – 1400°C, initial iron content 1.7% - 16%). Phosphorus not found in different forms in the slag is assumed to have been removed as vaporised P offgas (this is not confirmed). In nearly all tests, most or all P stayed in the slag, either chemically remaining in the slag or as phosphorus droplets not separated from the slag. In one case only was a significant part of the P (1400°C, low initial iron content of <2%).
Already fifteen years ago (Yokoyama et al. 2007, Kubo, Matsubae-Yokoyama & Nagasaka 2010) published results of lab scale (1g) tests of magnetic separation of simulated steel slag (mixtures of iron, calcium, silicon, aluminium and manganese chemicals). This showed improvement of the P:Fe ratio from c.0.2 (initial mixed chemicals) to c. 0.8 (after magnetic separation). However, the magnetically separated material still contained more iron than phosphorus.
“Study on the recovery of phosphorus and iron from molten modified high-phosphorus industrial slag by carbothermal reduction”, Y-Q. Liu et al., Metall. Res. Technol. 120, 307 (2023), https://doi.org/10.1051/metal/2023035
“Behavior of Carbothermal Dephosphorization of Phosphorus-Containing Converter Slag and Its Resource Utilization”, S. Tong et al. Processes 2023, 11, 1943. https://doi.org/10.3390/pr11071943
“Effect of iron oxide content on dephosphorization behavior of slag gasification”, S. Wang et al., Metalurgia 61 (2022) 3-4, 595-598, ISSN 0543-5846 https://hrcak.srce.hr/file/396846
“Effect of Slag Composition on Phosphorus Separation from Steelmaking Slag by Reduction”, K. Nakase et al., ISIJ International, Vol. 57 (2017), No. 7 http://dx.doi.org/10.2355/isijinternational.ISIJINT-2017-071
“Magnetic Separation of Phosphorus Enriched Phase from Multiphase Dephosphorization Slag”, H. Kubo et al., Tetsu-to-Hagané, Vol. 95 (2009), No. 3, pp. 300–305) - ISIJ International, Vol. 50 (2010), No. 1
“Separation and Recovery of Phosphorus from Steelmaking Slags with the Aid of a Strong Magnetic Field”, K. Yokoyama et al., to-Hagané, Vol. 92, 2006, No.11, pp. 683–689) ISIJ International, Vol. 47 (2007), No. 10
ESPP comment: these lab studies confirms what is already known from the P4 industry, that P is difficult to separate from iron by carbothermal reduction. For industry, the remaining ferrophosphorus is a low or zero value by-product, decreases yield and increases energy consumption.
P4 production by electrolysis, without carbon reduction, by dissolving phosphate rock in liquid calcium chloride (molten at 850°C) was demonstrated at lab-scale (electrolysis cell with 300g of liquid CaCl2. The calcium chloride was heat dried under vacuum, then heated to 850°C to melt, under argon, in an aluminium oxide crucible within a silicon oxide vessel. 2% mass of calcium phosphate Ca(PO4)2 was dissolved in the molten CaCl2. Silver cathode and graphite anode electrodes were used for electrolysis, causing phosphate to dissociate to P (moving to the cathode) and oxygen. Phosphorus was shown to have accumulated on the cathode (by dismantling at the end of the experiment) and on the surface of the silicon oxide vessel above the melt bath: the boiling point of P4 is around 280°C, significantly lower than the 850°C electrolysis temperature, so these deposits may be allotropes of phosphorus other than P4. Erosion of the graphite anode suggested that oxygen generated by electrolysis had combined with graphite to CO or CO2. The authors note that the rate limiting factor would be diffusion of the P and O ions in molten CaCl2, that other liquids could be used on condition that they dissolve calcium phosphate.
Patents by Gruber 1957-1960 and Caton 1963 showed successful production of P4 by electrolysis of molten metaphosphates, pyrophosphates or polyphosphates, or lithium and sodium phosphates, possibly with borates.
“A New Concept for Producing White Phosphorus: Electrolysis of Dissolved Phosphate in Molten Chloride”, X. Yang & T. Nohira, ACS Sustainable Chem. Eng. 2020, 8, 13784−13792, https://dx.doi.org/10.1021/acssuschemeng.0c04796
“Method for the Preparation of Pure Elemental Phosphorus”, B. Gruber, (Monsanto), U.S. Patent 2955552, 1960, https://patents.google.com/patent/US2965552A/en
“Polarography in Fused Alkali Metaphosphates”, R. Caton et al., Anal. Chem. 1963, 35 (13), 2103−2108, https://pubs.acs.org/doi/abs/10.1021/ac60206a035
P4 production by electrolysis of molten sodium tri metaphosphate melting point 628°C) was demonstrated at lab scale suggesting potential to achieve 95% Faradaic efficiency and to develop direct electrolysis to P4 from phosphoric acid. The tests used alumina reactor tubes of c. 460 mm x 13 mm diameter (then replaced by quartz for better oxidation resistance), under nitrogen flow, with glossy carbon and graphite electrodes. The sacrificial graphite anode was oxidised in electrolysis mainly to CO2. Elemental phosphorus (P4) was collected in a cold water bath through which offgas flow was bubbled. The authors indicate that the electrolysis breaks down the sodium trimetaphosphate (STMP) as follows: 6 (NaPO3)n -> P4 + 2 Na3PO4 + 5 O2 and that if phosphoric acid is added it is reacted and dehydrated 2 Na3PO4 + 4 H3PO4 – 6 H2O -> 6 (NaPO3)n so potentially enabling continuous electrolysis of phosphoric acid to P4. The authors note that this process benefits from the high ionic strength of the molten condensed phosphates which ensures high electrical conductivity, but the low proton content which avoids risk of hydrogen (H2) generation. The electrochemical cell ensures separation of the P4 generated at the cathode from O2 generated at the anode. The high phosphate content of condensed phosphates ensures high diffusion-limited current densities and their phosphoryl anhydride linkages are hypothesised to facilitate breakage of the strong P-O bonds (Lux acid effect, analogous to that of SiO2 in carbothermal P furnaces). The authors conclude that electrolysis in molten condensed phosphates can potentially produce P4 from phosphoric acid with high Faradaic efficiency and low overpotential.
“Towards Sustainable Electrosynthesis of Industrially Valuable Small Molecules”, J. Melville, PhD thesis Massachusetts Institute of Technology (MIT), Une 2021 https://dspace.mit.edu/handle/1721.1/139141
“Electrolytic Synthesis of White Phosphorus Is Promoted in Oxide-Deficient Molten Salts”, J. Melville, A. Licini, Y. Surendranath, ACS Cent. Sci. 2023, 9, 373−380, https://doi.org/10.1021/acscentsci.2c01336 and MIT News 21st February 2023 https://news.mit.edu/2023/more-sustainable-way-generate-phosphorus-0221
First reactions short summary: “Electrochemistry Cracks the P−O Bond: Sustainable Reduction of Phosphates to Phosphorus”, E. Nichols, ACS Cent. Sci. 2023, 9, 343−345 https://doi.org/10.1021/acscentsci.3c00056
See also J. Melville et al., 2021, summarised in ESPP eNews n°62.
ESPP comment: as a route to produce P4, electrolysis (even in hot molten salts) could potentially be more energy efficient and have lower GHG emissions than carbothermal reduction as currently used in P4 furnaces (using electrical energy and coke at c. 1400°C). Energy used to melt the electrolyte bed would not be lost in a continuous operation, and heat losses would be low in an insulated industrial-scale installation. There are however major challenges to scale-up to industrial implementation, including high temperature operation and durability (including avoiding oxidation), maintenance of electrodes and recovery of P4 (ensuring that P4 evolves as a gas and does not coalesce on the cathode or in the reaction chamber) in a continuous system without cooling the molten electrolyte. The possible effects of water if phosphoric acid is added (risk of H2 production) need to be assessed. The overall energy balance must take into account energy needed to produce phosphoric acid and to synthesise the salts used as electrolytes.
Ung & Li (2023) 27-page detailed overview of organophosphorus (OP) chemistry, applications and synthesis routes, including information on different OP chemical families by oxidation state and valency (PIII – PV). Summary of uses of OPs as drugs (osteoporosis, cancer, anti-bacterial, anti-viral, hypertension …), both existing today (fire safety & flame retardants, plasticisers, catalysts – e.g. for uranium extraction) and under development (compact and flexible organic electronics, improved energy-efficiency phosphorated LEDs …). Two possible routes to OP chemicals from phosphoric acid (not via P4) are mentioned: esterification of phosphoric acid or polyphosphoric acid (this is a route to some OP chemicals only, not all); use of trichlorosilane to reduce trimetaphosphates (see Cummins et al. see ESPP eNews n°45).
Tutorial review “From rocks to bioactive compounds: a journey through the global P(V) organophosphorus industry and its sustainability”, S. Ung, C-J. Li, RSC Sustainability, 2023, 1, 11–37 https://doi.org/10.1039/D2SU00015F
ESPP note: trichlorosilane is currently produced from silicon, itself from a reducing furnace, so with similar energy costs to P4 and poses operational and chemical efficiency challenges.
SCOPE Newsletter: www.phosphorusplatform.eu/SCOPEnewsletter
eNews newsletter: www.phosphorusplatform.eu/eNewshome
If you do not already receive ESPP’s SCOPE Newsletter and eNews (same emailing list), subscribe at www.phosphorusplatform.eu/subscribe
LinkedIn: https://www.linkedin.com/company/phosphorusplatform
Slideshare presentations: https://www.slideshare.net/phosphorusplatform - Twitter: @phosphorusESPP
YouTube https://www.youtube.com/user/phosphorusplatform
Please subscribe www.phosphorusplatform.eu/Subscribe
Link to www.phosphorusplatform.eu/eNews080
Download as PDF
3rd Summit of Organic and organo-mineral Fertiliser Industries in Europe. 16-17 January 2024, Brussels Plaza & hybrid
SOFIE is the only industry meeting place for organic-carbon-based fertiliser producers, distributors, advisory, technology suppliers. The first SOFIE (2019) attracted 125 participants, with 230 for SOFIE2 (January 2023).
Programme now online. Organic fertiliser company showcase pitches welcome.
Programme and conference website www.phosphorusplatform.eu/SOFIE
Registration now open SOFIE3 Conference + Defining “Bio-Based Fertilisers” Meeting on Eventbrite
Brussels & hybrid, 18th January 2024 Defining “Bio-Based Fertilisers” and FPR “solely biological origin”
The term “Bio-Based Fertilisers” is today being widely used. For market transparency and policy making. It is important to have a clear and agreed definition of what is a “Bio-Based Fertiliser” and how to define the “Bio-Based” nutrient content of fertilising products. Also, the EU Fertilising Products Regulation 2019/2009 uses the term “of solely biological origin” for nutrients in criteria of several PFCs and there is today no clarity on how this should be interpreted.
CEN and ISO methodologies for “Bio-based products: vocabulary” and for defining bio-based content are based on carbon radiodating, and are not applicable to nutrients.
This meeting will discuss
Programme: http://phosphorusplatform.eu/BBF2024
Registration now open SOFIE3 Conference + Defining “Bio-Based Fertilisers” Meeting on Eventbrite
ESPP members and our other readers (you are more than 105 000!) are invited to get involved in ESPP eNews by submitting relevant news, articles, or information about your actions. Contributions are invited from researchers, companies, and stakeholders, and can include recent updates, accomplishments within your organisation, insights, industry expertise, press releases or research articles and perspectives, presenting your own organisation’s actions, or other news which you think is of interest. You can send us a proposed short text ready for publication, or simply forward to us a link or document which you suggest we should cover. ESPP eNews are circulated to over 120 000 recipient including companies, stakeholders, regulators and media interested in nutrient management, worldwide, and are also published on the ESPP website www.phosphorusplatform.eu. Your participation will enrich our newsletter and provide a platform for you to showcase your expertise and achievements.
To share your news, research articles, or press releases to be included in the next eNews issues, email them to
Three Horizon Europe calls relative to “Clean environment and zero pollution” opened in October 2023 with deadline February 2024 (total budget 38 M€) and concern nutrient management and recycling and food systems. Projects funded under “Clean environment and zero pollution” aim at halting and preventing pollution by focusing on removing pollution from waters, soils, air, including nitrogen and phosphorus emissions, substituting harmful chemicals, improving the environmental sustainability and circularity of bio-based systems, and reducing environmental impacts of and pollution in food systems.
Demonstrating how regions can operate within safe ecological and regional nitrogen and phosphorus boundaries (Innovation action, 27 M€, 3 projects expected to be funded) aims at showing how N/P-relevant sectors (including agriculture, food/drink sector, water/waste management, bioenergy … ) in a given region can limit N/P emissions to air, water and soil from their activities by respecting pre-established regional N/P budgets and applying N/P balancing practices. These comprise activities that enhance the sustainability and circularity of N/P relevant resources and services between urban/industrial and rural/coastal environments and apply respective governance measures. Funded projects are expected to test innovative practices and technologies to make use of secondary raw materials and produce N and P-based fertilisers recovered from organic waste, wastewater, biological residues or by-products and promote local and regional value chains (achieving a TRL 8 by the end of the project) and to develop comprehensive guidelines to disseminate best practices and techniques to all involved actors.
Best available techniques to recover or recycle fertilising products from secondary raw materials (Coordination and Support Actions, 4 M€, 2 projects to be funded) covers technical, environmental and economic analysis of best available technologies for recovering/recycling fertilising products from secondary raw materials in Europe while limiting N and P pollution in soil, water and air and any other form of pollution from the use of such fertilising products and from the replacement of N- and P-based fertilisers produced from conventional processes. Examples of fertilising products are: recycled nutrients from urban and industrial waste water and sewage sludge, organic fertilising products from bio-waste, digestate and treated manure as well as other fertilising products from biological resources.
Environmental impacts of food systems (Research and Innovation Actions, 7M€) aims to fill the relevant knowledge and data gaps regarding the environmental impacts of food processing, manufacturing, packaging, distribution, trade, consumption, food waste and end of life practices. Proposals are expected to identify and map opportunities and innovative solutions, including existing good practices that address the identified impacts and promote the uptake of sustainable food production and/or food supply practices, including consumption practices, with minimum impact.
The deadline for submitting proposals is 22nd February 2024, 17:00 Brussels time.
Horizon Europe Working Programme 2023-2024 pdf (details of described calls at p. 364 and successive)
ESPP is interested to support networking, dissemination, and communication activities. Please contact Veronica Santoro for more information and possibilities (). ESPP research activities and ESPP nutrient related R&D project list www.phosphorusplatform.eu/R&D
European Parliament and Council (Member States) positions on UWWTD revision both maintain defining minimum reuse & recycling rates for phosphorus (art. 20), but Council proposes to delete reuse & recycling of nitrogen. Both support amendments to widen reuse & recycling to include from wastewater and not only from sludge (amendment proposed by ESPP). Positions differ on the timeline for defining reuse & recycling targets, with Parliament wishing to accelerate this. Parliament proposes to support development of a functional market for recovered nutrients but this is not proposed by Council. Both propose to include N2O in greenhouse emissions reductions, which is important as this is one of the most important climate impacts from wastewater treatment. Positions differ on extent of tightening of P and N emissions limits and removal obligations from sewage, and on proposed implementation deadlines for these, with Parliament’s position in many cases even more demanding than the initial Commission proposed revision text, and Council less demanding. Discussions to finalise the UWWTD revision now go to “trilogue” (negotiation between the European Parliament and Council representatives, with participation of the European Commission) with the aim to agree a compromise text to be adopted by both Parliament and Council before next year’s European Parliament elections (6-9 June 2024, followed by the designation of a new European Commission). ESPP has written to Member States and European Parliament rapporteurs suggesting that nitrogen reuse & recycling should not be abandoned in the current nitrogen fertiliser supply and price crisis context (related to gas supplies and the Russian war of aggression against Ukraine). ESPP proposes as a compromise to specify assessment by the Commission of feasibility and cost/benefits for nitrogen recovery.
European Commission initial proposed text for the UWWTD revision: https://environment.ec.europa.eu/publications/proposal-revised-urban-wastewater-treatment-directive_en
Parliament voted position: https://www.europarl.europa.eu/doceo/document/TA-9-2023-0355_EN.pdf
Council position: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CONSIL:ST_14271_2023_INIT
ESPP letter to Parliament and Council for trilogue: www.phosphorusplatform.eu/regulatory
2024 Work Programme shows limited Green Deal ambition. Emphasis is on resilience, economic security, digital, and reduced regulatory burdens. The Integrated Nutrient Management Action Plan, announced for 2023, is not mentioned (it was already not mentioned in previous Work Programmes, presumably because it was announced as a non-regulatory initiative). Pending initiatives listed include the Urban Waste Water Treatment Directive revision, the proposed Soil Health Act, Critical Raw Materials Act, Waste Framework Directive revision, Ecodesign Regulation recast, Nature Restoration Regulation. Three new initiatives are planned for 2024 under the Green Deal: wind power, 2040 climate targets, water resilience. An evaluation in 2024 of the Nitrates Directive will assess whether it is fit for purpose, including whether it sufficiently promotes the recycling of nutrients from various sources, including processed manure. A fitness check of “Polluter Pays” implementation is also announced. The revision of the EU chemicals regulation REACH, included in the 2023 Work Programme, has disappeared. A “strategic dialogue on the future of agriculture in the EU” is announced, targeting a “transition to sustainable food systems”. Food security and resilience of food systems are emphasised but nutrients are not mentioned.
European Commission Work Programme 2024 (17th October 2023).
Draft EU legislative text now with European Parliament and Council fixes “objectives” of healthy soils across the EU by 2050, including phosphorus and nitrogen criteria. Further details are in ESPP eNews n°77. ESPP’s input to the public consultation welcomes the proposed maximum phosphorus level for all European soils (maximum between 30 and 50 mgPOlsen/kgsoil) to be defined locally and maximum nitrogen levels (if critical ecosystem services are compromised). This reflects the EU Farm-to-Fork and Biodiversity Strategy target to “reduce nutrient losses by at least -50% without deteriorating soil fertility”. ESPP welcomes the recognition of appropriate fertilisation, nutrient recycling and organic fertilisers in Sustainable Soil Management Principles (in Annex III(e)). ESPP suggests that healthy soil criteria should also include, for crop and grazing land, MINIMUM plant-available phosphorus levels, defined by region / soil / crop types and taking into account biodiversity and water quality objectives. Without adequate phosphorus supply, plant health and crop productivity are compromised.
Proposed EU Directive on Soil Monitoring and Resilience (Soil Monitoring Law), European Commission proposed legislative text 5th July 2023, COM(2023) 416 final Eur-LEX.
ESPP has produced a table summarising EU Fertilising Products Regulation amendments, regulatory documents, links and other relevant EU documents available. The document can be consulted here and comments are welcome ().
Input welcome: “ESPP FPR summary table”, v15/11/2023 here
European Commission proposal maintains status quo of phosphates limits in consumer laundry and dishwasher detergents, but not in industrial detergents. The proposal’s main objectives are to update and simplify the 2019 Regulation and to address innovations: microbes included in detergents, consumer refill packs. The current Regulation limits phosphorus in detergents for consumer laundry (0.5gP/wash) and consumer automatic dishwasher (0.3 gP/wash). This effectively prevents the use of “phosphates” as detergent builders (sodium tripolyphosphate STPP or similar) but allows small quantities of components such as phosphonates. The draft European Parliament position, proposed by the Rapporteur Manuela Ripa proposes to reduce these limits and complexify them (distinguish “phosphate” content from “phosphorus”, fix limits per kg of laundry) and to also limit phosphorus in hand dishwash liquids, surface cleaners and in industrial laundry and industrial dishwasher detergents. The European Commission proposal states that phosphorus in industrial detergents is considered to be not environmentally significant and the suitable alternatives are not available. It is ESPP’s understanding that phosphates are generally not used in hand dishwash and surface cleaners (and not in shampoos), so that phosphorus limits in such products are not appropriate.
“COM(2023)217 - Proposal for a regulation of the European Parliament and of the Council on detergents and surfactants, amending Regulation (EU) 2019/1020 and repealing Regulation (EC) No 648/2004” 28th April 2023.
European Parliament draft report, Manuela Ripa, 2023/0124(COD), 2nd October 2023.
Partnership aims to improve customised fertiliser access and sustainable fertiliser use for farmers in Benin, Guinea, Mali and Togo, covering 10 million hectares. OCP, a member of ESPP, operates phosphate rock mines in Morocco and is a world leader in phosphate fertiliser and plant nutrition solutions. The partnership signed with the World Bank will reinforce the ECOWAS fertiliser and soil health Roadmap (Economic Community of West African States), develop digital soil analysis and mapping enabling adapted customised fertilisation, establish agricultural technology, service and training centres, and support the launch of a West Africa Regional Center for Soil Health and Fertility by IITA (International Institute for Tropical Agriculture). OCP says the partnership will enable West Africa to “contribute to global food security with a just and sustainable agricultural transition, contributing to African development and prosperity”
“OCP Group and World Bank Join Forces to Boost Food Security and Agricultural Development in West Africa”, World Bank, 11th October 2023
“Phosphate marocain : clé de la sécurité alimentaire Mondiale”, EcoNostrum, 26th October 2023.
MAD project (Magnetic Adsorption – Desorption) will test selective removal of soluble phosphate from wastewater by adsorption to magnetite, magnetic separation, then desorption to release a phosphate solution for recovery. Because it can readily be separated by electromagnetic field, magnetite (Fe3O4) is today used to improve flocculation, improving particulate settling and tertiary P-removal from wastewater in the CoMag process, with a number of units operating commercially worldwide (see SCOPE Newsletter n°141), and has been tested in various other processes (e.g. Marmara University, LKAB, Xiao et al., see SCOPE Newsletter n°138). Challenges for the Wageningen project will be to achieve selective adsorption of phosphate, without other ions, and without coagulation of organic particulates, and reversing the adsorption to generate a sufficiently concentrated and clean orthophosphate solution. Wageningen’s partners in the MAD project include Agristo (potato products), Royal Swinkels brewery, Bakker Magnetics, Sidra Wasserchemie, BiotaNutri and Suez.
Recovery and Valorisation of Phosphorus compounds from Waste Water Streams using Magnetic Adsorption-Desorption (MAD), website
International raw materials company, K+S has over 11 000 staff worldwide, specialised in potassium salts and other minerals for use in fertilisers, animal feed, food, pharmaceutical, water treatment, de-icing and industrial applications. The roots of the K+S Group date back to the middle of the 19th century, mining the world's first potash deposits in Germany for fertiliser production. Today, K+S operates potassium and sodium mineral mines in Europe and North America and produces balanced mineral products according to customer needs. K+S is strongly focussed on agriculture and fertilisers, and makes an important contribution to society by enabling farmers to secure the world's food supply. As a raw materials company with limited resources, K+S strives to make efficient use of its own natural raw materials to counteract global scarcity, whilst ensuring responsibility towards society and the environment in operating regions. The claim is to enrich life for generations and to be a pioneer for environmentally friendly and sustainable mining. Because the extraction of valuable materials from waste streams will play an ever more important role in creating a more sustainable future, K+S has set the mission of developing new, circular business areas as part of its strategy. For this purpose, K+S wants to actively participate in ESPP and establish partnerships to advance the circular economy. In the past, K+S successfully marketed “Thomaskali”, a secondary phosphorus product from steel industry slag. K+S will contribute to the ESPP network its many years of expertise in fertiliser production through to the targeted application of products
Full-scale phosphorus recovery from sewage sludge incineration ash today operating 1/3 capacity, treating c. 7000 t/y of ash. The technical grade phosphoric acid produced has iron/aluminium content which limits sale to certain applications. ESPP joined a visit of the Remondis TetraPhos P-recovery installation, Hamburg, with some 25 participants, organised by DPP (German Phosphorus Platform), 25th October 2023. TetraPhos is now operational, processing sewage sludge ash from Hamburg Wasser where the whole sewage sludge of the city of Hamburg (75%) and sewage sludge from surrounding municipalities (25%) is combusted. 1.5 million m³ wet sludge, = 125 000 t/y dewatered sludge, produce about 20,000 t/y of ash. Hamburg Wasser operates a dryer upstream of the incinerator that dries all locally produced sludge to 85% dry matter. After mixing this sludge with dewatered (25% DM) sludge from external customers, the sludge has about 45% DM and is conveyed to the incinerator where it is combusted without additional fuels. Heat for drying is supplied from the same sludge processed in anaerobic digesters. The P-recovery plant capacity is 7 000 t technical (75%) phosphoric acid from 20,000 t ash. The acid is not fully compliant with technical grade acid specifications because of high iron and aluminium concentrations. The concept is to sell it to customers who do not have an issue with Fe / Al content, for a slightly lower price than technical grade acid. Currently the plant is operating only one shift processing around 1/3 of the full capacity. The operating company Phosphorrecycling Hamburg http://www.phosphorrecycling-hh.de/unternehmen/unternehmen.html is a private public partnership between Hamburg Wasser and Remondis. The process (see summary in ESPP Technology Catalogue) is based on acid leaching with internally recycled phosphoric acid. Leaching is relatively mild, so most heavy metals remain in the filter cake (solid / liquid separation by a vacuum belt filter). The filter cake is landfilled (same category as ash). The liquid is reacted with sulphuric acid, gypsum precipitated and separated by another vacuum belt filter. Then the liquid is purified by ion exchange columns. On the photo, the phosphate recycling building is on the right side in the back, with the acid tanks in front.
Bibliometric analysis of nearly 250 000 published papers and patents shows an increasing number of both from 2001 to 2017, but after that date a doubling of publications but a halving of patents. Searches combined the terms sustainable, recycled or recovered with either fertiliser or nutrient (or similar words) from 2001 to 2021. The number of publications on nutrient recovery from wastewater increased from 2001 to 2012 but has not increased since then. Publications on green ammonia synthesis have increased rapidly since around 2017. In total, 120 000 patents were identified and 125 000 journal publications. Nearly all the patents were from China, as well as around half of the journal articles, with India and the USA also generating high numbers of publications. Most patents addressed agricultural wastes or wastewater & sludge. Publications on green ammonia synthesis have increased. This analysis fails to consider that these trends should be considered in the context of the overall inflation in scientific publications (doubling in 17 years Bornmann et al. 2021) and the similar global increase in patent applications (see here).
“Sustainable Fertilizers: Publication Landscape on Wastes as Nutrient Sources, Wastewater Treatment Processes for Nutrient Recovery, Biorefineries, and Green Ammonia Synthesis”, L. Babcock-Jackson et al., J. Agric. Food Chem. 2023, 71, 8265−8296, DOI.
Second online meeting analysed potential resource recovery streams and discussed three wastewater resource recovery case studies (Ostara struvite, AquaMinerals biopolymers, Cranfield University N-recovery as ammonia gas). Participants included five UK water companies, regulators, technology suppliers and experts. Analysis of over forty resource recovery technologies for UKWIR (UK Water Industry joint Research) and for Thames Water suggests that only biogas/biomethane and biosolids (sewage sludge to land) are widely viable at present, while heat recovery, ferric sludge, CO2, cellulose, hydrogen and nitrogen recovery are potentially promising in the medium term, based on economic and sustainability criteria. Key challenges are identified for all wastewater treatment resource recovery routes as the regulatory validation of the recovered product and responding to downstream user requirements (quality, supply logistics and scale …). The UK water industry Resource Recovery Working Group is open to participation of all concerned companies and competent persons.
Study presents an electroanalytical procedure employing a portable, sensitive, relatively low-cost system for the determination of paracetamol in human urine and in recovered struvite.
Paracetamol, one of the most consumed drugs in the world, was determined in samples of urine, struvite, and pharmaceutical tablet with screen-printed carbon electrodes in conjunction with optimized square-wave voltammetry. Urine samples consisted in human urine from a single donor (an adult male who had not used any medication in the previous 3 months), human urine used in the production of struvite from multiple donors, and synthetic urine. The proposed procedure, utilising 0.1 mol/l HCl as a supporting electrolyte and an Ag/AgCl electrode as reference, presented a limit of detection of 0.06 μmol paracetamol/l and a linear concentration range between 0.19 to 100.0 μmol/l. The method demonstrated a good sensitivity without using any preconcentration technique or modification of the electrode surface, and a good selectivity for determining paracetamol compared to the other substances studied as possible interferences, including ascorbic acid, uric acid, cephalexin, dopamine, diclofenac, ethinylestradiol, norfloxacin, prednisone, potassium, calcium, ammonia, and urea (in the proportion of 1:100 paracetamol:interferent). Good reproducibility was obtained for analyses performed on the same electrode, between electrodes and days, and recovery tests underlined no significant matrix interference. Among the method limitations is the possibility of some compounds to interfere with the detected analyte, which may require the sensor modification with specific materials (inorganic, organic, or biological).
“A portable electroanalytical procedure to determine paracetamol in organic fertilizers” L. R. G. Silva, Ionics (2022) DOI
SCOPE Newsletter: www.phosphorusplatform.eu/SCOPEnewsletter
eNews newsletter: www.phosphorusplatform.eu/eNewshome
If you do not already receive ESPP’s SCOPE Newsletter and eNews (same emailing list), subscribe at www.phosphorusplatform.eu/subscribe
LinkedIn: https://www.linkedin.com/company/phosphorusplatform
Slideshare presentations: https://www.slideshare.net/phosphorusplatform
Twitter: @phosphorusESPP
YouTube https://www.youtube.com/user/phosphorusplatform
European Parliament and Council (Member States) positions on UWWTD revision both maintain defining minimum reuse & recycling rates for phosphorus (art. 20), but Council proposes to delete reuse & recycling of nitrogen. Both support amendments to widen reuse & recycling to include from wastewater and not only from sludge (amendment proposed by ESPP). Positions differ on the timeline for defining reuse & recycling targets, with Parliament wishing to accelerate this. Parliament proposes to support development of a functional market for recovered nutrients but this is not proposed by Council. Both propose to include N2O in greenhouse emissions reductions, which is important as this is one of the most important climate impacts from wastewater treatment. Positions differ on extent of tightening of P and N emissions limits and removal obligations from sewage, and on proposed implementation deadlines for these, with Parliament’s position in many cases even more demanding than the initial Commission proposed revision text, and Council less demanding. Discussions to finalise the UWWTD revision now go to “trilogue” (negotiation between the European Parliament and Council representatives, with participation of the European Commission) with the aim to agree a compromise text to be adopted by both Parliament and Council before next year’s European Parliament elections (6-9 June 2024, followed by the designation of a new European Commission). ESPP has written to Member States and European Parliament rapporteurs suggesting that nitrogen reuse & recycling should not be abandoned in the current nitrogen fertiliser supply and price crisis context (related to gas supplies and the Russian war of aggression against Ukraine). ESPP proposes as a compromise to specify assessment by the Commission of feasibility and cost/benefits for nitrogen recovery.
European Commission initial proposed text for the UWWTD revision: https://environment.ec.europa.eu/publications/proposal-revised-urban-wastewater-treatment-directive_en
Parliament voted position: https://www.europarl.europa.eu/doceo/document/TA-9-2023-0355_EN.pdf
Council position: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CONSIL:ST_14271_2023_INIT
ESPP letter to Parliament and Council for trilogue: www.phosphorusplatform.eu/regulatory
Please subscribe www.phosphorusplatform.eu/Subscribe
Link to www.phosphorusplatform.eu/eNews079
Download as PDF
3rd Summit of Organic and organo-mineral Fertiliser Industries in Europe. 16-17 January 2024, Brussels Plaza & hybrid
SOFIE is the only industry meeting place for organic-carbon-based fertiliser producers, distributors, advisory, technology suppliers. The first SOFIE (2019) attracted 125 participants, with 230 for SOFIE2 (January 2023, photo below).
SOFIE3 will cover:
Short proposals for presentations, company showcases or posters by 15th October to : see details HERE.
SOFIE3 is co-organised by ESPP, Eurofema and Fertilizers Europe, with support of the International Fertiliser Society
www.phosphorusplatform.eu/SOFIE2024
6th PERM becomes NERM – 16-17 April 2024 – Brussels & online – plus research students meeting & site visits.
NERM (Nutrients in Europe Research Meeting) is organised by ESPP, FERTIMANURE, LEX4BIO, RUSTICA, SEA2LAND, WALNUT and Biorefine Cluster Europe.
Towards closing nutrient cycles for a sustainable future, from R&D to implementation.
- key outcomes of recent nutrient recycling R&D projects
- roadmap for future nutrient recycling R&D needs
- nutrient recovery technologies and recycled fertiliser production
- quality, application and use, stakeholder acceptance of secondary fertilisers
- from nutrient recovery to market
Plus PhD / research students event 15th April and site visits (on-farm and sewage treatment nutrient recovery sites).
Call for abstracts, open to 15th November 2023, and outline programme are published https://phosphorusplatform.eu/nerm
Public consultation open to 3rd November 2023. Possibility to input plain text comments (max. 4 000 characters) plus document. https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/13350-Soil-health-protecting-sustainably-managing-and-restoring-EU-soils_en
Amendments to the EU Waste Framework Directive, as proposed by the European Commission, would fix targets to reduce food waste by 2030: -10% for food manufacture and processing, -30% for households. Member States must define Food Waste reduction programmes, including the following actions: behavioural change campaigns, actions to address supply chain inefficiencies, food donation systems, skills training, funding for SMEs and social economy actors. The proposed amendments to the Directive are currently open to public consultation and will go to European Parliament and Council for decision.
“Revision of EU Waste Framework”, public consultation open to 22nd November 2023. Possibility to input plain text comments (max. 4 000 characters) plus document. https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/13225-Environmental-impact-of-waste-management-revision-of-EU-waste-framework_en
Phosphorus and nitrogen in food waste could supply around 10% of nutrients needed for crop production. Analysis for Seattle, USA, suggests that if all food waste were collected and nutrients recycled (compared to only 10% - 50% current collection rates) this would supply 0.6 kgN and 0.1 kgP (per person, per year). The estimates are based on Zhang 2007, who analysed food waste in San Francisco, finding average contents (% dry matter) of 3% N, 0.5% P and 0.9% K. These estimates of nutrients in food waste compare to an estimated 6.6 kgN and 1.1 kgP considered necessary input to grow non animal feed crops. ESPP notes that average dietary intake of phosphorus is around 0.5 kgP/person/year (c. 1.3 gP/person/day, see SCOPE Newsletter n°103). Estimates of food waste production and collection vary considerably: US EPA 2009 = 109 kg/person/year, Seattle 123 kg in 2009 reduced to 65 kg in 2021 in single-family homes, but only 56 kg down to 30 kg in multi-family homes (apartments). The conclusions are that nutrient recycling potential from food waste is limited (compared to municipal wastewater and manure) but is nonetheless significant, and that the priority must be to reduce food waste.
“Connections: How Much N And P Are In Urban Residuals?”, S. Brown, BioCycle, 7th August 2023.
Public consultation is open to 30th October on proposals a Delegated Regulation to include “Processed Manure” (as defined in the Animal By-Products Regulations) in the EU Fertilising Products Regulation FPR (CMC10). ESPP’s proposed input is HERE for comment. The proposed criteria are based on a draft JRC report circulated for comment to the Fertilisers Expert Group late September. The proposed Delegated Regulation would add processed manure to CMC10 to the EU Fertilising Products Regulation, under certain specified conditions. This concerns only “Processed Manure” which has reached an End Point as defined in EU Animal By-Products (ABP) Regulation 1069/2009, that is fulfilling the criteria specified in the ABP daughter Regulation 142/2011 – Annex XI – Chapter I – Section 2, which specifies (inter alia) heat treatment of at least 70°C for 1 hour in a registered ABP processing plant
It is noted that manure which has undergone composting or anaerobic digestion according to both the criteria in the ABP Regulations and the criteria in CMCs 3 or 5 of the EU Fertilising Products Regulation (FPR) are already authorised under the FPR* (It is ESPP’s understanding that this also applies to combustion ashes and pyrolysis materials / biochars subject to the criteria of CMCs 13 and 14*).
The proposed criteria for “Processed Manure” in CMC10 specify that the material shall have a limited oxygen uptake (intended to ensure stability), sets limits for PAH (poly aromatic carbons) and indirectly for certain herbicide residues, and specifies that the material can be post-processed by a specified and limited list of processes including solid-liquid separation, drying, pH adjustment, P or N recovery and that additives necessary for such processes can be used (with limits and conditions). The proposed criteria also require storage to be protected from sunlight and precipitation, intended to avoid ammonia losses to air, odours or leaching. ESPP suggests that such loss mitigation should also cover transport, that it be clarified whether this refers to before ABPR processing, between ABPR processing and FPR certification or after FPR certification (placing on the market). ESPP also suggests that this criterion should be made clearer by specifically referring to limiting air pollution, leaching and accidental spillages,. ESPP notes, and welcomes, that limiting ammonia losses during use should is addressed in labelling (Annex II of the FPR).
ESPP thanks the European Commission for the rapid production of these proposed criteria and draft Delegated Regulation for “Processed Manure” in CMC10, and notes that these take into account comments input by stakeholders, in particular concerning post-processing.
European Commission public consultation “EU fertilising products – Processed manure as a component material in EU fertilising products”, open to 30th October 2023 (4 000 characters plus possibility to upload a document) HERE
ESPP’s proposed input is HERE for comment.
European Commission JRC DRAFT circulated for comment (not yet adopted or endorsed by the European Commission) “Technical proposals for processed manure as a component material for EU Fertilising Products” LINK.
* These points remain to be clarified.
100+ participants in Brussels and online discussed standards needs to support the bio-economy concluding that clear definitions are needed to support Public Procurement policies and for transparency for companies in the market at a workshop organised by the European Commission on 29th September 2023. Presentations included DG GROW, CEN/TC 411 / WG 4 ‘Sustainability criteria, life cycle analysis and related issues’, ISO/TC 276 ‘Biotechnology’ and Eurostat. The workshop emphasised that standards are considered important by companies to enable market access, improve quality and reduce risks. One study suggests that standardisation contributes 30 – 40% of GDP growth and of labour productivity (Menon, Nordic Economies, 2018). Participants noted that the US is actively developing bio-based standards to promote national production in line with the Inflation Reduction Act objectives. Much work is ongoing on standards for forestry and paper products, and on aspects such as Life Cycle Assessment or general circularity approaches (e.g. ISO/TC 323 - Circular economy). There is wide demand from many different industry sectors for standard development for various bio-based products and processes.
NACE codes were discussed. These are important because used in EU statistics and often also in policy criteria. However, NACE codes are based on companies’ economic activity (often reflecting the production process and output products) and are not adapted to identifying inputs or processes used (a company’s NACE code will say it produces textiles, not whether or not it uses IA to control its machines). Participants noted that use of NACE codes in e.g. the EU “Taxonomy” criteria is ineffective in identifying bio-based inputs.
ESPP indicated that there is a need for a standard for defining “bio-based” nutrient content of fertilisers (or of e.g. phosphorus in technical chemicals) in that the CEN methodology for quantifying bio-based content of products (CEN/TR 16721) uses radio-dating which is not applicable to P, K or N (see ESPP eNews n°73). This is also relevant for interpretation of the wording “nutrients of solely biological origin” in the EU Fertilising Products Regulation (PFC definitions of Organic Fertiliser, Organo-Mineral Fertiliser, Organic Soil Improver). ESPP’s draft position Paper on the definitions of “Bio-Based Fertiliser” or “Bio-Based Nutrient” is available here and is open for comment. ESPP notes that development of many standards is underway to support implementation of the EU Fertilising Products Regulation and STRUBIAS.
The European Commission concluded that the workshop demonstrated the importance of standards to industry, and confirmed the need to further work on standards relevant to bio-based materials, and also to look at how standards and NACE codes are used in EU policy criteria.
DG GROW is also working on market tools to promote uptake of bio-based products, and announced a second workshop on this theme 11th December 2023. See ESPP’s input to the first such workshop (10th May 2023) here.
Written input to DG GROW is open to 15th October
European Commission DG GROW Bio-Based Products page.
Fourteen organisations have signed a joint letter to the European Commission asking for rapid publication and high ambitious of the EU’s INMAP (Integrated Nutrient Management Action Plan), announced in 2020 in the Green Deal. They underline that INMAP is urgent and necessary to achieve the Farm-to-Fork, Biodiversity and Zero Pollution Action Plan targets to reduce nutrient losses by 50% by 2030. The letter states that “bold action and clear directions are needed” and urges the European Commission “to hold to its promise to deliver the INMAP and to listen to scientific expertise for setting the path until 2030 and beyond … the EU could achieve genuine strategic autonomy in nutrients management and ultimately food production”.
Open letter to the: European Commission “Completing the European Green Deal: The Commission’s initiative for an Integrated Nutrients Management Action Plan”, European Environmental Bureau (EEB), Eureau, AquaPublica and others, 13th September 2023 on EEB website.
ESPP questions the statement in the letter cited above that “phasing out synthetic fertilisers use in the EU is realistic as part of a transition to agroecological farming, accompanied by a cut in food waste and a shift to sustainable diets”. It is not ESPP’s competence to discuss this statement for nitrogen. For phosphorus, we note that both of the two studies referenced (Poux IDDRI 2018, Billen 2021) explicitly state that they do not address phosphorus. ESPP also notes that phosphorus inputs are considered to have been a determinant allowing global population expansion beyond one billion after the 19th century (Smit et al. 2009). Phosphorus cannot be biologically fixed from air. Medieval agriculture was phosphorus efficient so phasing out inputs from mined phosphate rock might mean returning to both a medieval population level and a medieval average diet. However, dietary shifts have less impact on net P use than they do on N or CO2, because P is conservative: what goes into one end of the cow comes out the other end (some is lost in growing fodder to feed animals). ESPP has often presented slides in conferences (publicly available here) indicating that “Without mineral phosphate fertilisers we could feed maybe 1/5th of the current world population (adapted from Dawson et al., Food Policy 2011)”. ESPP does not suggest that this is accurate but to date nobody has indicated to us that it is completely wrong, and (as we have done when presenting these slides) we call on scientists to carry out such an assessment for phosphorus.
Any comments on this discussion are welcome and may be published in our next eNews. Send to
75-page DG Research summary of 72 Horizon 2020 projects on nutrients (total 370 M€ EU funding) proposed as a contribution to INMAP (the announced EU Integrated Nutrient Management Action Plan). The report, prepared by the European Commission DG Research and Innovation, analyses 72 Horizon 2020 research projects, completed or underway and with project budgets > 1 M€, addressing phosphorus and/or nitrogen cycles, nutrient pollution reduction techniques, fertiliser production, nutrient use in agriculture or governance. The projects are considered to have policy impact if e.g. policy recommendations were elaborated within the project, and to have technological impact if e.g. a pilot plant was built. It is not however analysed whether policy recommendations made by the project have been considered by policy makers or implemented into regulation, nor whether the pilot plant led to industrial scale up and uptake to market. The projects led to a total of forty-two pilot plants, four patents and nearly 100 scientific publications or conference proceedings. Policy outcomes cited include that the Urban Waste Water Treatment Directive should be revised (underway), that the Sewage Sludge Directive should be revised (expected) and the establishment of EU End-of-Waste criteria for products recovered from wastewaters (rejected for the moment, European Commission 5th April 2022, see ESPP eNews n°65) and financial incentives for circular water technologies (not yet anticipated). Conclusions include the need to enable permanent access to project outcomes after projects end (project websites tend to disappear when project funding terminates), centring dissemination efforts at the end of the project (when there are results and outcomes to present, rather than presenting what the project hopes to do) and including policy recommendations relevant to EU legislation in technical projects.
“Systematic approach preventing pollution from nitrogen and phosphorus. A contribution to the Integrated Nutrients Management Plan from the Research & Innovation perspective”, European Commission DG Research & Innovation, August 2023 DOI.
Four N2 Applied plasma slurry nitrogen upgrade installations, supplied in partnership with food industry technology leader GEA, will be installed at dairy farms in the Netherlands to improve supply chain sustainability for Unilever. The N2 Applied system increases nitrogen fertiliser value of slurry and stabilises nitrogen present in the slurry, so reducing losses to water and losses of methane, ammonia and greenhouse gases to air. The N2 Applied technology is provided by GEA as a “manure enricher solution” as part of the GEA “Next Generation Farming” approach. The four installations in the Netherlands will provide data for a year to enable Unilever to assess benefits for milk supply chain sustainability and potential for scale-up. GEA state that the system can reduce dairy farms’ total carbon footprint by up to 30%, and that reducing nitrogen losses allows more efficient nutrient use and so economic benefits for the farmer.
“N2 Applied's technology will be used by food industry giant”, N2 Applied News, September 2023.
“GEA partners with Unilever to improve sustainability on dairy farms”, 31st August 2023.
Led by Thames Water, UK “Resource Recovery Technical Working Group” aims to bring together stakeholders and collate information on technologies and regulation. Members to date include several English water companies, Scottish Water, Irish Water, consultancy experts, researchers and government representatives. A first online meeting, with around forty participants, 28th September, discussed developments in EU and UK regulations (EU Waste Water Treatment Directive revision, EU Fertilising Products Regulation and UK fertilisers regulations, REACH and UK REACH, End-of-Waste) and how to develop an economic market for recycled nutrients and other recovered materials (e.g. polymers). Future meetings will look at resource recovery and nutrient recycling technologies, end-use needs, building markets for recovered materials, operating parameters and scalability, economics and technology evaluation, contaminants and safety.
UK “Resource Recovery Technical Working Group”. This working group is open.
To participate contact: Robert Naylor
ESPP slides from RAMIRAN September 2023, update on EU policy and regulations for organics recycling HERE.
The Aqua Publica Europea event, in Verona and online 29th June, saw 120 participants discuss the legislative framework, sludge management approaches, and measures to increase the circularity of the wastewater sector.
Milo Fiasconaro, Aqua Publica Europea, Bernard Van Nuffel, Vivaqua, and Roberto Mantovanelli, Viveracqua, welcomed participants and introduced the main objectives of the seminar: to explore the approaches to circularity in the water sector across Europe and to promote a dialogue with experts and institutions about how to address common challenges in the context of the ongoing revision of the Urban Wastewater Treatment Directive and the publication of the evaluation of the Sewage Sludge Directive by the European Commission.
Nele-Frederike Rosenstock, European Commission, DG ENV, summarised the main novelties of the revision of the Urban Wastewater Treatment Directive (UWWTD, see also ESPP’s summary), now under co-decision in the Parliament and Council, and its relevance to sludge management. Articles 14 and 20 are especially important for circularity and sludge, as they address the tracking of non-domestic pollution and its reduction at source (art. 14), which should result in cleaner sludges, and the use of sludge according to the waste hierarchy (art. 20), as well as the introduction of recycling rates for P and N. She also reported on the recently published evaluation of the Sewage Sludge Directive, which finds that the Directive is effective and relevant and supported by stakeholders, although more can be done to adapt it to Green Deal targets and currently available technologies. At the moment, it is yet to be decided politically whether or not the text will be revised, but this would seem appropriate as it dates from 1986.
Jon Rathjen, Scottish Government: Scottish Water’s has moved from dumping sludge into the ocean as a waste until 2000, into making it a resource, with the Scotland’s wastewater sector now producing 3% of the nation’s energy needs as biogas from sludge digestion, with the sludge digestate mostly valorised in agriculture, and other sources as wind and solar.
Gudrun Winkler, Hamburg Wasser: the public operator manages Germany’s biggest wastewater treatment plant (150 million m3/y) operating sludge digestion and incineration. The plant is energy neutral since 2011, thanks to the VERA incineration plant processing 100 000 m3 of dried sludge/y, producing 89 GWh/y of electricity and 80 GWh/y of heat (before accounting the energy used to dry the sludge). Around 1 700 tP/y of phosphorus will be recovered as phosphoric acid from the sewage sludge incineration ash by the Remondis TetraPhos (now in production). The TetraPhos process also recovers iron/aluminium salts for recycling of phosphate precipitants to wastewater treatment.
Paolo Giandon, Veneto Region: Veneto has seen a reduction in the direct use of sewage sludge in agriculture observed since 2017 due to regulatory uncertainties and farmers’ mistrust. A waste management plan was therefore proposed by the Veneto region in 2022 to prioritise the reuse in agriculture, describing different sludge disposal routes (direct reuse in agriculture, composting, energy production) depending on sludge quality. Mr Giandon also mentioned challenges posed by the recast of the UWWTD, related to high cost and time needed for implementing the required measures.
Bertrand Vallet, European Commission, DG RTD, outlined the Commission’s research agenda on circularity. Circular economy was a key topic for the Horizon 2020 funding framework and was mainly focussed on resource recovery from wastewater and prevention of pollution. The current funding programme, Horizon Europe, is providing 655.5 million € for water in the 2021-2024 period, and is particularly focussed on harnessing the innovation potential and market uptake of successful circular economy examples, and on the implementation of large-scale circular systems for the reuse of water and sludge.
Two projects currently ongoing by APE members were then presented. The first one, presented by Enrico Pezzoli, Como Acqua, intends to build an anaerobic digestion plant in the Como area, co-financed under the Recovery Fund, treating sewage sludge, agri-food wastes, green wastes and the organic fraction of municipal solid waste. The Fanghi Project, presented by Marco Blazina, Metropolitana Milanese, and concluded in 2022, built a HTC pilot plant and a mono-incineration plant for sludge thermal valorisation and phosphorus recovery.
The seminar concluded with a panel discussion addressing the framework conditions to step up circularity. Veronica Santoro, ESPP, emphasised that a plurality of effective approaches to circularity already exist and presented concrete examples of phosphorus recovery in the wastewater sector. She also stressed the importance of communication and stakeholder engagement to ensure adequate societal support to circularity. David Bolzonella, University of Verona, agreed that there is a plurality of approaches available, and there is no silver bullet to solve the issue of sludge management. He also argued that society is moving away from an ‘end-of-pipe’ approach to wastewater and that treatment plants are being transformed into ‘bio-refineries’ capable of recovering precious substances. Despite this, end markets for these substances are not yet stable. In this regards, Bertrand Vallet highlighted the lack of a ‘critical mass’ or critical quantity of recovered materials that can underpin investments in supply chains. All panellists agreed that there is not a one-size-fits-all solution to circularity, approaches can be combined according to contextual conditions, and political choices on the appropriate mix must be made at national and local level to bolster circularity.
“Circular ways: promoting circular approaches in wastewater treatment”, organised by Aqua Publica Europea with Viveracqua and Acque Veronesi, 29th June 2023
Urban Wastewater Treatment Directive Recast (26/10/2022); Sewage Sludge Directive evaluation (22/05/2023)
US Academy of Science funded (since 2021) phosphorus sustainability Center STEPS has published a 70-page Roadmap proposing a 25% reduction in dependence on mined phosphate and a 25% reduction in P losses within 25 years. The Roadmap outlines the phosphorus Problem, a Vision for phosphorus Sustainability and nine Opportunities for action. It underlines the challenges of rising global food demand, phosphate rock as a finite resource, inefficient phosphorus processing and use, legacy P trapped in soils and eutrophication leading to algal blooms. Action on phosphorus is situated in the global agendas of innovation and sustainability, emphasising the need to improve P monitoring, process animal and farm wastes, improve agricultural P efficiency, reduce phosphate rock mining waste and develop valuable products from P-recycling. The nine proposed actions are: improving agricultural P-use efficiency, processing farm wastes and particularly manure to fertilisers, recovering P to valuable products, reducing and recovering phosphate mining wastes, reducing food supply chain and food wastes, improving P-monitoring, developing markets for P-management solutions, engaging stakeholders to accelerate technology adoption, increasing public awareness. These nine actions are each detailed into short-term, medium and long-term sub-actions, The 33 sub-actions are organised by “stakeholder”: advocacy, academia and NGO, farmers, finance, food chain industry, regulators, waste & water industries, mining, media. An Appendix identifies over 90 “aggregated impact opportunities” proposed in other reports including Our Phosphorus Future (see ESPP eNews n°67), RePhoKUS, OCP Sustainability Report 2021, Water Research Foundation Holistic Approach to Nutrient Management 2022 …
STEPS “25-in-25: A Roadmap Toward U.S.Phosphorus Sustainability” Roadmap, May 2023 DOI.
The C sink function weakened after P fertilisation due to increased ecosystem respiration, resulting from changes in vegetation composition and litter quality, increased enzyme activity, microbe metabolism and peat decomposition. The study was conducted in a peatland in northeastern China, where a 12-year experiment (2007-2019) mimicked environmental changes by adding different levels of P (5 and 10 kg ha-1 y-1) to the soil, to assess the impact of P fertilisation on CO2 emissions. The following were monitored for five months (May to September 2019) after the 12 years of P fertilisation: CO2 fluxes, soil total C, N and P, vegetation and plant cover, dissolved organic C in peat pore water, and activity potential of extracellular hydrolytic enzymes. Long-term P addition altered vegetation structure by inhibiting the growth of Sphagnum mosses and facilitating that of vascular plants, without significantly changing gross primary production relative to the controls. The shift in vegetation led to more high-quality litter and easily accessible C sources for microbes. This increased ecosystem respiration and boosted phenol oxidase enzyme activity, likely due to higher phenolic content in the plant litter. Consequently, the concentration of dissolved organic C in pore water increased, accelerating peat decomposition. Nitrogen metabolism enzyme activity increased, whereas phosphorus and carbon metabolism enzymes were unchanged. Additionally, fungal abundance increased in P-fertilised plots, potentially accelerating the breakdown of soil organic C and increasing CO2 emissions. As a result of these processes, the peatland's capacity to absorb CO2 was significantly reduced with P fertilisation. The average net CO2 uptake during the growing season was in fact only 0.002 at high level of P, compared to 0.063 mg/m2/s in the control plots.
“Long-Term Phosphorus Addition Strongly Weakens the Carbon Sink Function of a Temperate Peatland” F. Lu et al., Ecosystems (2022) DOI.
Life Cycle Analysis suggests that partial substitution of rock-based P fertilisers with wastewater-derived P products reduces global warming, eutrophication, ecotoxicity, and acidification potential of crop production. The study assessed the life cycle environmental impacts, for a functional unit of producing 1 kg of crop, of replacing half of the conventional rock-based P fertilisers in maize, rice, and wheat production with P products derived from wastewaters from six different recovery routes. The considered wastewater treatment plant included activated sludge treatment and anaerobic sludge. The P recovery routes considered were: precipitation from digester supernatant (struvite or tricalcium phosphate) and P-recovery from sewage sludge mono-incineration ash (Rhenania phosphate or single superphosphate). The pathways and scenarios were evaluated based on literature data and inventories, databases, and modelling of P recovery integration into a wastewater treatment plant. Results indicate that wastewater-derived struvite, tricalcium phosphate, and Rhenania phosphate-like product can reduce environmental impacts in most scenarios, with the extent of change varying by crop. Eutrophication potential decreased in nearly all pathways and scenarios, because the LCA calculation assumed reduced P content in the wastewater treatment plant effluents. Conversely, processes involving thermo-chemical treatment and chemical extraction increased global warming potential and ecotoxicity in all scenarios, outweighing the benefits of avoiding conventional fertilisers due to additional chemical inputs and heating energy.
“Life Cycle Environmental Impacts of Wastewater-Derived Phosphorus Products: An Agricultural End-User Perspective” K. A. Lam et al., Environ. Sci. Technol. (2022) DOI.
SCOPE Newsletter: www.phosphorusplatform.eu/SCOPEnewsletter
eNews newsletter: www.phosphorusplatform.eu/eNewshome
If you do not already receive ESPP’s SCOPE Newsletter and eNews (same emailing list), subscribe at www.phosphorusplatform.eu/subscribe
LinkedIn: https://www.linkedin.com/company/phosphorusplatform
Slideshare presentations: https://www.slideshare.net/phosphorusplatform
Twitter: @phosphorusESPP
YouTube https://www.youtube.com/user/phosphorusplatform
Click here to access the slides: https://slideshare.net/phosphorusplatform/thornton-espp-slides-ramiran-september-2023-11923…
Learn more about Ramiran conference, Cambridge, UK, 12–14 September 2023: https://ramiran2023.org
Please subscribe www.phosphorusplatform.eu/Subscribe
Link to www.phosphorusplatform.eu/eNews078
Download as PDF
3rd Summit of Organic and organo-mineral Fertiliser Industries in Europe. 16-17 January 2024, Brussels Plaza & hybrid
SOFIE is the only industry meeting place for organic-carbon-based fertiliser producers, distributors, advisory, technology suppliers. The first SOFIE (2019) attracted 125 participants, with 230 for SOFIE2 (January 2023, photo below).
SOFIE3 will cover:
Short proposals for presentations, company showcases or posters should be sent by 15th October to : see details HERE.
www.phosphorusplatform.eu/SOFIE2024
SOFIE3 is co-organised by ESPP, Eurofema and Fertilizers Europe, with support of the International Fertiliser Society.
Monday 18th September 2023, 14h – 17h, online
Co-organised by IFOAM Europe and ESPP.
Registration is free and is open to representatives of Organic Farming organisations from across Europe.
Full meeting agenda HERE. Registration: Eventbrite.
12-14 September 2023, Cambridge, UK
The “Recycling of Agricultural, Municipal and Industrial Residues in Agriculture Network” (RAMIRAN) expertise and research network, established 25 years ago, expects over 200 delegates at its 18th international conference. Themes addressed include policy and regulation (including ESPP update on EU policies and regulations), recycled and organic nutrient crop utilisation, soil quality, air and water nutrient losses, treatment and processing technologies and best practices. Speakers include the UK ministry DEFRA, Chinese Academy of Sciences, ADAS, TEAGASC, Wageningen WUR, University of Minnesota, OCAPI Paris, ESPP. The conference will lead to a Frontiers special issue in Sustainable Food Systems – Waste Management in Agroecosystems. (abstract submission: 30th September 2023)
RAMIRAN 2023, 12-14 September, Cambridge UK https://ramiran2023.org/
Save the date. NERM – 16-17 April 2024 – Brussels & online – plus research students meeting & site visits.
NERM (Nutrients in Europe Research Meeting) is organised by ESPP, FERTIMANURE, LEX4BIO, RUSTICA, SEA2LAND, WALNUT and Biorefine Cluster Europe. Towards closing nutrient cycles for a sustainable future, from R&D to implementation.
- key outcomes of recent nutrient recycling R&D under Horizon 2020, LIFE, Interreg and other programmes
- roadmap for future nutrient recycling R&D needs
- nutrient recovery technologies and recycled fertiliser production
- quality, application and use, stakeholder acceptance of secondary fertilisers
- from nutrient recovery to market
Plus PhD / research students event April 15th 2024 and site visits (on-farm and sewage treatment nutrient recovery sites).
Call for abstracts and outline programme will be published in September 2023.
NERM, 16-17 April 2024, Brussels https://phosphorusplatform.eu/nerm
ESPP is looking for a regulatory consultant to prepare a dossier on Cat1 ABP ashes for input to EFSA (European Food Safety Agency) on possible use of Cat1 ashes and derivates in fertilisers, in particular prion safety.
See relevant background documents at www.phosphorusplatform.eu/regulatory
Full details of services requested HERE. To express interest, please contact ESPP before 15th September 2023.
European Commission (DG GROW) tender to assess agronomic efficiency and safety for use of certain ABPs in fertilising products, as per art. 51-1(b) of the EU Fertilising Products Regulation 2019/2009. Budget 120 000 €. Submission deadline 18th September 2023. The study does NOT concern health safety aspects which are assessed by EFSA (European Food Safety Agency, see ESPP eNews n°61). It does concern environmental safety and worker safety, for use as or in fertilising products, and “agronomic efficiency” either in itself in a fertilising product or to facilitate production of effective fertilising products. The study covers (i) materials listed in the DG SANTE Delegated Act (not yet published, see C(2023) 3366 here) and (ii) twelve other ABP materials specified in the tender documents. The study does NOT cover “Processed Manure” (as defined in the EU Animal By-Product Regulations) because this is being assessed separately by JRC. Also, the study does NOT cover ABPs in composts, digestates, Cat. 2-3 ashes which are included in the Delegated Act (art. 3 a, b, c) because (to ESPP’s understanding) these are covered by CMCs 3, 5, 13 and so will not be added to CMC10 (the tender specifies that it concerns ABPs to “include in CMC 10”).
EU tender “Technical study to include new materials in CMC 10 to the Fertilising Products Regulation”, GROW/2023/OP/0027. Submission deadline 18th September 2023 HERE.
Public consultation open to 26th October 2023. Possibility to input plain text comments (max. 4 000 characters) plus document. https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/13350-Soil-health-protecting-sustainably-managing-and-restoring-EU-soils_en
The EU Regulation amending the Animal By-Products Regulations to allow use of certain ABPs in CE-Mark fertilising products is now published. This establishes ‘End Points’ under the Animal By-Products Regulations for a number of ABP materials for use in fertilising products without traceability (the EU Fertilising Products Regulations FPR provide CE-Mark fertilisers with ‘End-of-Waste’ and product status), whereas currently these materials can be authorised for use under national fertilisers regulations but only subject to traceability.
The published amending Regulation is essentially as proposed to public consultation in October 2022 (see ESPP eNews n°70) and covers, under specified conditions:
It is ESPP’s understanding that:
European Commission Delegated Regulation 2023/1065 of 22 May 2023 published in the EU Official Journal 8th August 2023 “supplementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council as regards the determination of end points in the manufacturing chain of certain organic fertilisers and soil improvers” https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2023.198.01.0001.01.ENG
The UK Government has announced its intention to relax requirements that building of new houses in catchments of protected natural areas must be “Nutrient Neutral”. Current requirements are derived from EU case law concerning protection of Natural (Habitats Directive) areas from eutrophication (detail in ESPP eNews n°59 and n°35). The EU case law effectively requires that any action in the catchment (from building houses to grazing cattle) must only be authorised if it is demonstrated “there is no reasonable scientific doubt as to the lack of adverse effects” on the Natura site. Currently the UK regulator prevents any new house build in catchments of Natura areas impacted by eutrophication unless compensatory measures are engaged, such as creating wetlands as nutrient buffers, or reducing nutrient emissions from farms or sewage works. The UK Home Builders Federation (HBF) claims (30th June 2023) “145,000 homes currently blocked. Rivers increasingly polluted. SME builders threatened despite no link between house building and river pollution. Builders forced to fallow farmland and trout farms to comply with rules, threatening food security”. The UK Wildlife Trusts say (24th July 2023) that the proposed UK “Environment Act” would fix the target to reduce P, N and sediment losses by 40% by 2038, with upgrades to wastewater treatment works and review and expansion of environmental permits controlling pollution from farming, so creating “the necessary headroom that will mean that housing development will no longer have to worry about nutrients”.
“Pollution rules could change to ease housebuilding”, BBC 29th August 2023.
“Policy paper. Nutrient pollution: reducing the impact on protected sites”, UK Government, 28th June 2023.
Literature and expert assessment concludes that treated sewage sludge (biosolids) use can reduce the carbon footprint of agriculture, improve soil quality and reduce mineral fertiliser use, but underlines lack of long-term data. The 117-page report considers different sewage sludge treatment processes (drying/liming, composting, digestion, pyrolysis = biochar) and analyses carbon loss and soil carbon storage, nitrous oxide and other greenhouse emissions in land application, fertiliser replacement. Part of the organic carbon in sewage sludge is lost or transformed in sewage treatment (e.g. conversion to biogas in anaerobic digestion). Around 25% of carbon in sludge is estimated to be retained in soil after 11 – 34 years, resulting in an average increase in SOC (soil organic carbon) of c. 14% after repeated biosolids application. The report reminds that the SOC capacity of soils is limited, so that long-term repeated applications will eventually not further increase SOC. No studies were identified as providing evidence of impacts of sewage sludge biochars on soil carbon storage. Nitrous oxide emissions from land application of digested sludge are estimated at 0.6% of applied N-total – somewhat lower than the 1% factor currently used in the UK GHG Inventory (emissions are much lower after composting or pyrolysis). Nearly 90% of UK sewage sludge is currently applied to agricultural land after treatment (3 – 4 Mt biosolids/y), supplying c. 5 600 tN/y, 37 500 tP/y, 2 400 tK/y and 28 000 tS/y, representing a saving of c. 33 000 t/y carbon emissions. The report concludes that available evidence supports that appropriate agricultural use of treated sewage sludge (biosolids) is environmentally beneficial, but that there is a lack of data from long-term field studies, and in particular inadequate data on nitrous oxide emissions, ammonia emissions and nitrate leaching from biosolids land use, soil organic carbon retention, use of sewage sludge biochar.
“Biosolids to land: carbon emissions and carbon capture”, report no. 23/CL/01/38, UKWIR (UK Water Industry Research), 2023. UKWIR research reports online https://ukwir.org/water-industry-research-reports
Survey in seven European countries suggests that reliably known nutrient levels, organic matter content, cost, and ease of application of are the most desirable properties.
The survey was conducted among stakeholders (farmers and advisors) in seven North-West European countries to understand which qualities they consider important in recycled-derived fertilisers and would encourage them to use these to substitute mineral fertilisers. The survey indicated that recycled-derived fertiliser means processed organic wastes or products from these, including from manures, food waste, green waste or sewage sludge. This will mean that the results are biased because mainly persons already informed or motivated will have responded. The authors fail to mention this inherent bias anywhere in the paper. Most of the 1225 participants responded from France, Belgium and Ireland, and over 80% were farmers (mostly conventional farming) with the remaining 20% from horticulture, agricultural companies and research. In the farmers’ view, the most important parameter for the selection of a fertiliser was good quality at good price, whereas other stakeholders were more interested in the nutrient content, composition and availability. Nutrient ratio corresponding to crop nutrient demand was the most noted quality for users, followed by a high organic matter content, whereas non-users preferred qualities were price per unit nutrient, ease of use and environmental security. 46% of participants also indicated that a known NPK concentration was the most important reason why they would substitute mineral fertilisers, highlighting that high variability in nutrient composition of recycled fertilising materials is often the reason behind farmers' choice of synthetic mineral fertilisers. Over 80% of respondents indicated that if recycled fertilisers had the desired important qualities, they were willing to substitute mineral fertilisers if the recycled fertilisers were subsidised and free of charge or cheaper than mineral fertilisers, whereas less than 20% were willing to substitute if they were slightly more expensive than mineral fertilisers.
“What are the desired properties of recycling-derived fertilisers from an end-user perspective?”, A. Egan et al., Cleaner and Responisble Consumption 5, 100057 (2022), DOI
Modelled climate scenarios were compared without terrestrial nutrient limitation in the model (C), with nitrogen (N) limitation and with nitrogen and phosphorus (NP) limitation. The University of Victoria Earth System Climate Model was used and carbon emission budgets to limit global warming to +1.5°C or +2°C were modelled. Results suggest that the carbon budget would be c. 20% lower in both cases for N limitation, and c. 25% lower for NP limitation. Phosphorus is considered less limiting in tropical regions. These results are coherent with Peng et al. 2022 (see ESPP eNews n°77) who concluded that P limitation could reduce global carbon CO2 uptake by 7.5%.
“Effect of terrestrial nutrient limitation on the estimation of the remaining carbon budget”, M. De Sisto & A. MacDougall, Biogesciences Discussions 2023, DOI.
Iron dosing to open oceans has been proposed as a route to stimulate algae growth, and so carbon sequestration. New study suggests that global consequences may be negative, because resulting uptake of major nutrients reduces supplies in coastal waters and reducing carbon uptake there as well as possibly impacting ecosystems and fisheries. Phytoplankton growth in open ocean surface waters is often limited by iron, especially in zones of nutrient upwelling, so iron dosing can increase primary production, so absorbing atmospheric CO2 which may then be sequestered as part of the biomass sinks to deeper waters. This study models impacts of global ocean iron fertilisation, in the context of climate change, using the PISCESv2 (within NEMO) and APECOSM oceanographic and IPSL CMSA climate models, under the CMIP5 RCP8.5 high emissions scenario. This shows that iron fertilisation is likely to exacerbate a key impact of climate change which is to deplete upper ocean waters of nutrients because of stratification (heating of the upper layer reduces vertical mixing). The modelling concludes that global ocean iron fertilisation would result in reductions in upper ocean water animal biomass, in particular in tropical regions, including in coastal ecosystems, with possible negative impacts on fisheries, and possibly overall limited or net negative global impact on primary production and carbon sequestration. These effects occur only after a delay of maybe two decades with ocean currents so that short-term or local monitoring of ocean iron fertilisation may not provide transposable results.
“Ocean iron fertilization may amplify climate change pressures on marine animal biomass for limited climate benefit”, A. Tagliabue et al., Glob Change Biol. 2023;29:5250–5260, DOI
A global meta-analysis suggests that P fertilisation increases the soil total N pool, enhances biological nutrient immobilisation, reduces N losses, accelerates soil N cycling and could enhance soil C sequestration.
Over 1700 observations from 116 peer-reviewed publications were analysed to assess the effects of P addition on soil N pools and cycling processes and how these vary among ecosystem types and P fertiliser management schemes. Data were limited to studies reporting clear information on P addition rate and duration and including both a control and a P-addition treatment, and covered mainly field tests. Data was from across the world, but with most coming from Asia and North America. The factors considered were related to soil N pools (soil total N, NO3-, NH4+, dissolved inorganic and organic N, microbial biomass N), N cycling (mineralisation, nitrification, denitrification, ammonification, N2O emission, NO3- leaching), and P and C soil pools. The analysis underlined the role of P fertilisation in increasing the soil total N pool in field experiments, particularly after long term P addition (≥5 yr). This was potentially the result of increased plant N uptake (as evidenced by the increase in plant productivity and decrease in available soil N pools), enhanced biological N fixation and reduced N losses (NO3- leaching). The accumulation of soil total N was coupled with an increase in the soil C pool size, suggesting a role of P in promoting soil C sequestration. Phosphorus addition also accelerated some of the soil N cycling processes, including N mineralisation (especially in grasslands), nitrification, and denitrification (in forests and wetlands) with the effect sizes varying among ecosystem types and increasing with P fertilisation rates. No impacts on N2O emissions were observed.
“Phosphorus supply increases nitrogen transformation rates and retention in soil: A global meta-analysis” R. Wang et al., Earth's Future, 10, e2021EF002479, 2022 DOI
Modelling of nutrient losses with climate change in two small Swedish catchments suggests that Green Deal -50% nutrient loss reduction targets will require conversion of c. 1% of cropland to wetland / nutrient buffers. Hestadbäcken catchment (8 km2), centre-east Sweden, and Tullstorpsån (62 km2), south Sweden, both mainly agricultural, were modelled for nutrient losses, including under climate change scenarios. Modelling considered a 20% reduction in fertiliser application, cover crops and “stream mitigation” consisting of reconversion of agricultural land to wetland or buffer zones along streams. Conclusions are, in both cases, that around 1% of catchment cropland area must be converted to stream mitigation to achieve the Green Deal nutrient loss reduction target, other measures being insufficient. Modelling suggests that climate change could lead to a slight increase in P loss to the streams, related to increased precipitation, and either an increase or decrease in inorganic N loss depending on the balance between increased runoff, evapotranspiration and increased N mineralisation. In particular, high rainfall events are likely to increase, and measures are needed to prevent these leading to nutrient losses to the stream, such as a low threshold barrier to prevent wetland floodwaters entering the stream.
“How to Achieve a 50% Reduction in Nutrient Loads from Agricultural Catchments under Different Climate Trajectories?”, M. Wynants et al., Authorea. 2023, DOI.
SCOPE Newsletter: www.phosphorusplatform.eu/SCOPEnewsletter
eNews newsletter: www.phosphorusplatform.eu/eNewshome
If you do not already receive ESPP’s SCOPE Newsletter and eNews (same emailing list), subscribe at www.phosphorusplatform.eu/subscribe
LinkedIn: https://www.linkedin.com/company/phosphorusplatform
Slideshare presentations: https://www.slideshare.net/phosphorusplatform
Twitter: @phosphorusESPP
YouTube https://www.youtube.com/user/phosphorusplatform
The EU Regulation amending the Animal By-Products Regulations to allow use of certain ABPs in CE-Mark fertilising products is now published. This establishes ‘End Points’ under the Animal By-Products Regulations for a number of ABP materials for use in fertilising products without traceability (the EU Fertilising Products Regulations FPR provide CE-Mark fertilisers with ‘End-of-Waste’ and product status), whereas currently these materials can be authorised for use under national fertilisers regulations but only subject to traceability.
The published amending Regulation is essentially as proposed to public consultation in October 2022 (see ESPP eNews n°70) and covers, under specified conditions:
It is ESPP’s understanding that:
European Commission Delegated Regulation 2023/1065 of 22 May 2023 published in the EU Official Journal 8th August 2023 “supplementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council as regards the determination of end points in the manufacturing chain of certain organic fertilisers and soil improvers” https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2023.198.01.0001.01.ENG